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Summary. As an alternative to the mean regression model, the quantile regression model has been studied
extensively with independent failure time data. However, due to natural or artificial clustering, it is common
to encounter multivariate failure time data in biomedical research where the intracluster correlation needs
to be accounted for appropriately. For right-censored correlated survival data, we investigate the quantile
regression model and adapt an estimating equation approach for parameter estimation under the working
independence assumption, as well as a weighted version for enhancing the efficiency. We show that the
parameter estimates are consistent and asymptotically follow normal distributions. The variance estima-
tion using asymptotic approximation involves nonparametric functional density estimation. We employ the
bootstrap and perturbation resampling methods for the estimation of the variance–covariance matrix. We
examine the proposed method for finite sample sizes through simulation studies, and illustrate it with data
from a clinical trial on otitis media.
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1. Introduction
Quantiles are useful summary statistics to characterize the
survival experience of patients. Compared to the mean sur-
vival time, quantiles are more robust against outliers. Regres-
sion models based on a set of properly selected quantiles may
give a global assessment of covariate effects. As an impor-
tant alternative to the mean regression model for examining
the covariate effects on a continuous outcome variable, semi-
parametric quantile regression models have been extensively
studied (Koenker and Bassett, 1978; Jung, 1996; Portnoy and
Koenker, 1997). The parameter estimation is based on esti-
mating equations that can often be solved by the linear pro-
gramming or iterative bisection methods. The variances of re-
gression coefficient estimates typically depend on the density
function of error terms. To avoid the nonparametric functional
density estimation, a variety of resampling methods have been
proposed to estimate the standard errors of the parameter
estimates (Parzen, Wei, and Ying, 1994; Buchinsky, 1995;
Hahn, 1995; Horowitz, 1998; Bilias, Chen, and Ying, 2000;
Jin, Ying, and Wei, 2001). Recently, quantile regression has
been generalized to model survival data (Ying, Jung, and Wei,
1995; Lindgren, 1997; Yang, 1999; Koenker and Geling, 2001;
McKeague, Subramanian, and Sun, 2001; Tian and Wei, 2002;
Portnoy, 2003). This is a natural extension since quantile-

based regression is robust against outliers, and the survival
times are usually highly right-skewed. In econometrics, much
research has been conducted for the type I censoring cases,
where the event is observed only if it occurs prior to some
prespecified time, namely the “Tobit” model (Powell, 1984;
Fitzenberger, 1997; Buchinsky and Hahn, 1998; Khan and
Powell, 2001).

Ying et al. (1995) proposed the median regression model for
independent failure time data. Their method involves min-
imizing discrete and nonsmooth functions, which may have
multiple local minima. The standard optimization algorithms
are not practically suitable for this minimization problem,
while the simulated annealing algorithm (Lin and Geyer,
1992) was suggested. Since the limiting variance–covariance
matrix of the parameter estimates depends on the unknown
density function, the minimum dispersion test statistic was
used for inference. McKeague et al. (2001) applied the miss-
ing information principle to replace the censored data by
an estimator using the conditional expectation based on the
observed data. Tian and Wei (2002) proposed an iterative
method for the parameter estimation, and an algorithm to es-
timate the variance–covariance matrix by appropriately per-
turbing the estimating function (Jin et al., 2001). To deal
with dependent censoring, Bang and Tsiatis (2002) studied
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a median regression model with univariate censored medical
cost data, which may lead to more cost-effective therapies
and more efficient medical intervention. In quantile regres-
sion analysis, one can do such regressions simultaneously for
a set of properly selected quantiles. It provides a complete
picture and may show different important covariate effects at
different follow-up stages. Some covariates may have a signif-
icant effect at an early period of follow-up, and no effect later
on, or vice versa. Especially in the situation where the sign
of the effect may change over the duration of follow-up, the
quantile regression model offers a natural analytic approach.
For example, some prospective cohort studies have shown that
men seem to have a lower mortality rate than women before
60 years of age and a higher mortality rate after 79 years of age
after hospital discharge for myocardial infarction. Quantile re-
gression, therefore, is a suitable method for these studies.

To ensure the validity of the aforementioned methods, a
common and critical assumption is that the failure times are
independent. However, in many biomedical studies, this as-
sumption of independence may not hold due to natural or ar-
tificial clustering (e.g., dental or litter-matched mice studies).
One interesting example is a clinical trial involving children
with inflammation of the middle ear, otitis media (OM), which
is one of the most common childhood infections (Le and
Lindgren, 1996). A small tunnel (Eustachian tube) serves to
equalize the air pressure between the middle ear and the outer
side of the eardrum. Bacteria and viruses can enter the mid-
dle ear through the Eustachian tube (shorter in children than
adults), which may cause the middle ear to be filled with fluid
and sometimes pus, with an accompanying loss of hearing in
that ear. Even temporary periods of hearing loss in young
children (between 6 months and 6 years of age) can cause
delays in speech, behavior, and language development, and
learning. Inserting ventilating tubes into the infected ears has
been shown to reduce the incidence of OM episodes and im-
prove hearing as long as the tubes are in place and working.
Every year, about 1 million children receive ventilating tubes
in the United States. The aim of this clinical trial is to exam-
ine whether a medical treatment (prednisone and sulfametho-
prim) prolongs the life of the ventilating tubes, where the fail-
ure of a tube is defined as the cessation of tube functioning
(blocked) or tube extrusion. A straightforward application of
the existing quantile regression approaches is not appropri-
ate because the paired observations from the two ears of each
child are clearly not independent.

For highly stratified correlated failure time data, extensive
research has been carried out on hazard-based regression. Lee,
Wei, and Amato (1992) proposed a multiplicative intensity
model where they proposed an estimating equation under the
working independence model and showed that the parame-
ter estimates are consistent and asymptotically normally dis-
tributed. Lee, Wei, and Ying (1993) applied the linear re-
gression model or the accelerated failure time (AFT) model
to the clustered censored data. More recently, Cai, Wei, and
Wilcox (2000) studied a class of linear transformation models,
which includes the Cox proportional hazards model and the
proportional odds model as two special cases.

In this article, we propose the quantile regression model for
correlated failure time data. We adapt an estimating equa-
tion approach (Ying et al., 1995) for parameter estimation,

derive the asymptotic theories, and outline an estimating pro-
cedure for a weighted version of quantile regression. For the
estimation of the variance–covariance matrix, we employ and
compare two different resampling methods. Our resampling
schemes take a cluster instead of an individual observation
as a sampling unit. In particular, with relatively large cluster
sizes, we propose a two-stage version of resampling.

The rest of this article is organized as follows. In Sec-
tion 2.1, we introduce the semiparametric quantile regression
models for correlated survival data. In Section 2.2, we describe
the estimating procedure based on an iterative algorithm. In
Section 2.3, we derive several asymptotic properties for the
proposed model. In Section 2.4, we propose a weighted ver-
sion of the estimating equation by accounting for the within-
cluster correlation. In Section 3, we study the bootstrap and
perturbation resampling methods for variance estimation. In
Section 4, we conduct simulation studies to investigate the
performance of the quantile regression model with finite sam-
ple sizes. In Section 5, we apply the proposed method to the
OM data for illustration. We provide the concluding remarks
in Section 6, and outline the theorem proofs in the Appendix.

2. Quantile Regression Models
2.1 Model Formulation
Let Tik (i = 1, . . . ,n; k = 1, . . . ,Ki ) be the failure time or its
log transformation for the kth subject in the ith cluster, and
let Zik be the corresponding p × 1 vector of bounded covari-
ates. Assume that the Ki ’s are bounded, i.e., for a constant
K < ∞, Ki ≤ K for all i = 1, . . . ,n. Let Cik be the censor-
ing variable and Xik = Tik ∧ Cik be the observed time, where
“∧” denotes the minimum and “∨” denotes the maximum of
the two values. The failure time indicator ∆ik = 1 if Tik is
observed, and ∆ik = 0 otherwise. Assume that Cik is indepen-
dent of both Tik and Zik . Within each cluster, {(Tik , Cik , Zik ),
k = 1, . . . ,Ki} may be dependent but exchangeable. The clus-
ter size may vary for different clusters by setting Xik = 0
and ∆ik = 0 if the kth failure time is not applicable to the
ith cluster. For technical reasons, we assume that potentially
every cluster has K members. Define Ti = (T i1, . . . ,TiK )′,
and similarly for Ci and Zi. We assume that {(Ti, Ci, Zi),
i = 1, . . . ,n} are independent and identically distributed.

Along the line of the AFT model (Lee et al., 1993), the
quantile regression model substitutes the 100(1 − τ)th per-
centile of failure times, ξτ (Tik |Zik ), for the traditional mean,

ξτ (Tik |Zik ) = β′
0τZik , (1)

where τ ∈ (0, 1) and β0τ is the true coefficient vector. Let
ετ,ik = T ik − β′

0τZik , then ξτ (ετ,ik |Zik ) = 0. The conditional
distribution of ετ,ik is completely unspecified and may de-
pend on the covariate vector Zik . For correlated data with-
out any censoring, under the working independence assump-
tion (Liang and Zeger, 1986), we propose to estimate β0τ by

minimizing n−1
∑n

i=1

∑Ki

k=1 φτ (Tik − β′
τZik ), where φτ (u) =

u{I(u ≥ 0) − τ}. The estimating equation for β0τ is thus

given by n−1
∑n

i=1

∑Ki

k=1 Zik{I(Tik − β′
τZik ≥ 0) − τ} = 0. For

the special case of median regression, with τ = 1/2, it reduces
to the least absolute deviation estimation.

For correlated survival data, let G(t) be the com-
mon survival function of the censoring variable and Ĝ(t)
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be the corresponding Kaplan–Meier estimator based on
{(Xik , 1 − ∆ik ), k = 1, . . . ,Ki; i = 1, . . . , n}, Ĝ(t) =∏

u≤t
{1−dN̄G(u)/Ȳ (u)}, where the counting process NGik (t) =

I(Xik ≤ t,∆ik = 0), Ȳ (t) =
∑n

i=1

∑Ki

k=1 I(Xik ≥ t), N̄G(t) =∑n

i=1

∑Ki

k=1 NGik (t), and dN̄G(t) = N̄G(t) − N̄G(t−). The
usual Nelson–Aalen estimator for the cumulative hazard of
the censoring time is defined as Λ̂G(t) =

∫ t

0 dN̄G(u)/Ȳ (u).

Ying and Wei (1994) proved the consistency of Ĝ(t) under
the φ-mixing condition. Observe the fact that conditional on
Zik , Pr(Xik − β′

0τZik ≥ 0) = G(β′
0τZik )τ . Under the working

independence correlation matrix, we propose the estimating
function for β0τ as

Sn(βτ ) = n−1
n∑
i=1

Z′
iêi(βτ ,Xi,Zi), (2)

where Zi = (Zi1, . . . ,ZiK )′, Xi = (Xi1, . . . ,XiK )′, êi =
(êi1, . . . , êiK )′, and

êik (βτ ,Xik ,Zik ) =
I(Xik − β′

τZik ≥ 0)

Ĝ(β′
τZik )

− τ.

In practice, if Ĝ(β′
τZik ) = 0, we set I(Xik − β′

τZik ≥ 0)/
Ĝ(β′

τZik ) = 0.

2.2 Estimating Procedures
Due to the discontinuity of Sn(βτ ), a unique solution in
Sn(βτ ) = 0 is usually unavailable. One may obtain a so-
lution β̂τ by minimizing the Euclidean norm ‖Sn(βτ )‖. A
numerical challenge arises for the minimization of the non-
smooth estimating function that cannot be achieved via stan-
dard optimization techniques, such as the Newton–Raphson
algorithm. We adapt an efficient iterative procedure (Tian
and Wei, 2002) using the Nelder–Mead simplex algorithm to
estimate the parameters.

For notational simplicity and clarity, we suppress the
subindex “τ” such that β0 and β̂ denote the true parame-
ter and the corresponding estimator, respectively. To obtain
a root to the equation Sn(β) = 0, the iterative algorithm is
described below.

Step 1: Obtain an initial value β̂[0] by minimizing a convex
function of β,

n−1
n∑
i=1

Ki∑
k=1

∆ik

Ĝ(Xik )
φτ (Xik − β′Zik ). (3)

Step 2: Update the estimating function by replacing β in
Ĝ(β′Zik ) with β̂[0],

S[1](β) = n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik − β′Zik ≥ 0)

Ĝ
(
β̂′

[0]Zik

) − τ

}
.

A root β̂[1] of S[1](β) = 0 can be obtained by minimizing
the convex function of β,

C[1](β) = n−1
n∑
i=1

Ki∑
k=1

{
(Xik − β′Zik )I(Xik − β′Zik ≥ 0)

Ĝ
(
β̂′

[0]Zik

)
− (Xik − β′Zik )τ

}
.

The Nelder–Mead simplex algorithm can be used here,
which directly evaluates the target function at each point of
the simplex without requiring any derivatives or continuity
properties.

Step 3: Replace β̂[0] in Ĝ(·) with β̂[1], and minimize the convex

function C [2](β) to obtain its minimizer β̂[2]. Then go back
to Step 2, and continue this procedure until the prescribed
convergence criteria are met.

Note that (3) is basically the inverse probability weighted
estimating equation which is reminiscent of the Horvitz–
Thompson estimator (1952). Finally, we have a sequence of
well-defined β̂[m](m = 0, . . . ,M). Following arguments simi-
lar to those in Appendix I of Tian and Wei (2002) for inde-
pendent failure time data, it can be shown that ‖β̂[0] − β0‖ =

o(n−1/2+ε) a.s. with ε> 0, and for m=1, . . . ,M, ‖β̂[m] − β0‖ =
o(n−1/2+ε) a.s. by the method of induction.

2.3 Asymptotic Properties
Now, we study the asymptotic theories under the regularity
conditions as given in the Appendix. Let β̂ = β̂[M ], and the

strong consistency of β̂ is given in the following.

Theorem 1: As n → ∞, β̂ converges to β0 almost surely.

Let MGik (t) = NGik (t) − I(Xik ≥ t)ΛG(t) be the cen-
soring time martingale with respect to the marginal fil-
tration Fik (t) = σ{(Nik (s), Yik (s+),Zik ), 0 ≤ s ≤ t}. However,

M̄G(t) =
∑n

i=1

∑Ki

k=1 MGik (t) is not a martingale due to the in-
traclass correlation. The asymptotic normality of n1/2Sn(β0)
can be proved using the empirical process techniques and the
multivariate central limit theorem (CLT).

Theorem 2: As n → ∞, n1/2Sn(β0) is normal with
mean zero and variance–covariance matrix Γ = E(ξ1ξ

′
1), where

ξi (i = 1, . . . ,n) is given by

ξi =

Ki∑
k=1

[
Zik

{
I(Xik ≥ β′

0Zik )

G(β′
0Zik )

− τ

}
+ τ

∫ ∞

0

q(t)

π(t)
dMGik (t)

]
,

(4)

and q(t) = limn→∞ n−1
∑n

i=1

∑Ki

k=1 ZikI(β
′
0Zik ≥ t), π(t) =

limn→∞ n−1Ȳ (t).

A consistent estimator Γ̂ can be obtained by replacing
G(·), β, π(t), and ΛG(t) with their empirical counter-
parts Ĝ(·), β̂, n−1Ȳ (t), and Λ̂G(t), respectively, i.e., Γ̂ =

n−1
∑n

i=1 ξ̂iξ̂
′
i where

ξ̂i =

Ki∑
k=1

[
Zik

{
I(Xik ≥ β̂′Zik )

Ĝ(β̂′Zik )
− τ

}

+ τ

∫ ∞

0

n∑
j=1

Kj∑
l=1

ZjlI(β̂
′
Zjl ≥ t)

n∑
j=1

Kj∑
l=1

I(Xjl ≥ t)

×{dNGik (t) − I(Xik ≥ t) dΛ̂G(t)}
]
.
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By proving the linearity property of Sn(β) in a local neigh-
borhood of β0 and applying Taylor’s series expansion, we con-
clude the following theorem.

Theorem 3: As n → ∞, n1/2(β̂ − β0) is normally dis-
tributed with mean zero and a sandwich variance–covariance
matrix A−1ΓA−1, where A = −ζE[f(0 |Z11)Z11Z′

11], ζ =
limn→∞ n−1

∑n

i=1Ki, and f(· |Zik ) is the density of εik condi-
tional on Zik .

We outline the proofs of the three theorems in the
Appendix. Based on the quantile regression model, we can
estimate or predict the quantiles of the survival time for a
given subject, and construct the confidence interval accord-
ingly. However, the variance of the parameter estimate de-
pends on the density of errors. The density could be esti-
mated by some nonparametric smoothing techniques, but it
might not be reliable for sample sizes of practical use, es-
pecially with correlated error terms. In Section 3, we pro-
pose to employ two resampling methods for the estimation of
the variance–covariance matrix, i.e., a blockwise bootstrap
method (Künsch, 1989) and a cluster-based perturbation
procedure.

2.4 Weighted Estimating Equations
Efficiency might be gained by incorporating an appropri-
ate weight function to account for the intraclass correlation.
Analogous to Cai and Prentice (1995, 1997), we consider the
weighted estimating equations,

SW
n (β) = n−1

n∑
i=1

Z′
iWêi(β,Xi,Zi),

where the K × K weight matrix W is included in an attempt
to enhance the efficiency of the estimation of β by accounting
for the correlation within clusters. Setting SW

n (β) = 0, we
have

n−1
n∑
i=1

Z′
i1
...

Z′
iK


′ W11 · · · W1K

...
. . .

...

WK1 · · · WKK




I(Xi1 −β′Zi1 ≥ 0)
Ĝ(β′Zi1)

− τ

...

I(XiK −β′ZiK ≥ 0)
Ĝ(β′ZiK )

− τ

 = 0.

To facilitate the computation, we split the weight matrix W
into an identity matrix I plus the difference W − I, and by
rearranging terms, we have

n−1
n∑
i=1

Z′
i1
...

Z′
iK


′ 

I(Xi1 −β′Zi1 ≥ 0)
Ĝ(β′Zi1)

− τ

...

I(XiK −β′ZiK ≥ 0)
Ĝ(β′ZiK )

− τ



= n−1
n∑
i=1

Z′
i1
...

Z′
iK


′ 1 −W11 · · · −W1K

...
. . .

...

−WK1 · · · 1 −WKK



×


I(Xi1 −β′Zi1 ≥ 0)

Ĝ(β′Zi1)
− τ

...

I(XiK −β′ZiK ≥ 0)
Ĝ(β′ZiK )

− τ

 .

Denote the right-hand side of the above equation by U(β),
and U(β) = 0 if W = I. To obtain a root to the equation
SW
n (β) = 0, we devise a modified iterative algorithm, as de-

scribed below.

Step 1: Obtain an initial value β̂[0] as in the unweighted
version.

Step 2: Update SW
[1] (β) by replacing β in Ĝ(β′Zik ) and β in

U(β) with β̂[0],

SW
[1] (β) = n−1

n∑
i=1

Ki∑
k=1

Zik

{
I(Xik − β′Zik ≥ 0)

Ĝ
(
β̂′

[0]Zik

) − τ

}
−U

(
β̂[0]

)
.

A root β̂[1] of SW
[1] (β) = 0 can be equivalently obtained by

minimizing the convex function of β,

CW
[1] (β) = n−1

n∑
i=1

Ki∑
k=1

{
(Xik − β′Zik )I(Xik − β′Zik ≥ 0)

Ĝ
(
β̂′

[0]Zik

)
− (Xik − β′Zik )τ

}
+ β′U

(
β̂[0]

)
.

Step 3: Replace β̂[0] in Ĝ(·) and β̂[0] in U(·) with β̂[1], and
obtain the corresponding convex function CW

[2] (β) and its
minimizer β̂[2]. Go back to Step 2, and continue until
convergence.

As mentioned by Cai and Prentice (1995, 1997), the ef-
ficiency gain would not be high by incorporating a weight
function for many correlated failure time analyses, unless de-
pendencies are very strong, sample sizes are large, and censor-
ing is not severe. Because the stochastic dependence among
multivariate failure times is often not very strong in practice,
we focus on estimates based on the estimating equation with
the identity weight matrix.

3. Resampling Methods for Variance Estimation
We describe and compare the bootstrap and perturbation re-
sampling methods to estimate the variance–covariance ma-
trix. We consider the one-stage and two-stage resampling
schemes according to the cluster sizes. For the one-stage boot-
strap method, we take each cluster as the sampling unit, and
thus the bootstrap sample is composed of a simple random
sample of clusters with replacement such that the intraclus-
ter correlation structure is preserved. Specifically, we draw a
simple random sample {(X∗

i , ∆∗
i , Z∗

i), i = 1, . . . ,n} with re-
placement from the original data {(Xi, ∆i, Zi), i = 1, . . . ,n}
with equal probability 1/n. For the two-stage version, we first
sample clusters, then within each selected cluster, randomly
sample individuals with replacement. We repeat the resam-
pling procedure B times and estimate the variance–covariance
matrix based on the sample statistics of (β̂∗

1, . . . , β̂
∗
B).

We generalize the perturbation method (Jin et al., 2001)
for our model setting. Let (U 1, . . . ,Un) be a simple ran-
dom sample from a positive random variable U with mean
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1 and variance 1, e.g., Exp(1). With the martingale notation
(Fleming and Harrington, 1991),

Ĝ(t) ≈ G(t) −G(t)

n∑
i=1

Ki∑
k=1

{
I(Xik ≤ t)(1 − ∆ik )

Ȳ (Xik )

−
∫ t

0

I(Xik ≥ u) dΛG(u)

Ȳ (u)

}
.

By perturbing the ith cluster by Ui , and replacing G(t) and
ΛG(t) by Ĝ(t) and Λ̂G(t), the perturbed version of Ĝ(t) is
then defined as

Ĝ∗(t) = Ĝ(t) − Ĝ(t)

n∑
i=1

[
Ki∑
k=1

{
I(Xik ≤ t)(1 − ∆ik )

Ȳ (Xik )

−
∫ t

0

I(Xik ≥ u) dΛ̂G(u)

Ȳ (u)

}]
Ui.

The corresponding perturbed version of the estimating func-
tion is

S∗
n(β) = n−1

n∑
i=1

Ki∑
k=1

Zik

{
I(Xik − β′Zik ≥ 0)

Ĝ∗(β′Zik )
− τ

}
Ui. (5)

Table 1
Parameter estimation bias, standard deviation (SD), standard error (SE), and 95% confidence interval coverage rate (CR) with

cluster size of 2

Bootstrap Perturb Bootstrap Perturb

n c% ρ ∆β0 SD SE CR SE CR ∆β1 SD SE CR SE CR

25 20 0.2 0.022 0.299 0.292 93.4 0.288 91.8 −0.031 0.418 0.425 94.2 0.419 93.4
0.5 0.018 0.294 0.294 93.4 0.289 92.8 −0.030 0.373 0.397 95.0 0.390 94.4
0.8 0.017 0.292 0.291 94.2 0.286 92.0 −0.028 0.320 0.353 96.4 0.347 96.2

40 0.2 0.026 0.338 0.343 93.6 0.320 91.2 −0.028 0.504 0.542 93.4 0.515 92.6
0.5 0.029 0.341 0.345 92.4 0.323 90.4 −0.034 0.480 0.520 94.2 0.496 93.0
0.8 0.039 0.348 0.341 92.2 0.321 91.4 −0.040 0.452 0.494 96.4 0.469 95.2

60 0.2 0.022 0.378 0.423 94.0 0.364 89.6 −0.018 0.642 0.703 96.4 0.619 91.6
0.5 0.037 0.399 0.423 92.8 0.368 89.2 −0.033 0.643 0.686 95.6 0.610 91.8
0.8 0.029 0.406 0.416 92.4 0.361 87.6 −0.033 0.620 0.665 95.8 0.591 91.8

50 20 0.2 0.014 0.199 0.206 93.0 0.202 92.4 −0.001 0.290 0.300 94.6 0.297 94.4
0.5 0.020 0.206 0.206 92.6 0.203 93.4 −0.006 0.272 0.278 93.8 0.276 93.6
0.8 0.010 0.202 0.206 93.4 0.201 92.6 0.004 0.232 0.248 95.2 0.246 95.2

40 0.2 0.020 0.238 0.241 92.4 0.230 89.6 −0.014 0.368 0.379 93.6 0.365 93.0
0.5 0.024 0.242 0.242 92.8 0.231 92.0 −0.021 0.350 0.365 95.0 0.351 93.8
0.8 0.015 0.229 0.241 92.6 0.230 91.6 −0.010 0.323 0.345 94.6 0.333 93.8

60 0.2 0.020 0.291 0.299 91.8 0.270 90.8 −0.017 0.470 0.505 95.0 0.462 93.4
0.5 0.030 0.289 0.298 93.6 0.268 90.8 −0.031 0.450 0.497 95.6 0.452 93.4
0.8 0.018 0.277 0.301 92.8 0.269 90.8 −0.020 0.417 0.484 96.4 0.440 95.4

100 20 0.2 −0.004 0.140 0.145 95.0 0.143 93.2 0.006 0.197 0.211 94.4 0.208 95.0
0.5 −0.002 0.141 0.145 93.6 0.144 92.0 0.004 0.183 0.196 94.0 0.194 93.8
0.8 −0.004 0.142 0.145 94.2 0.144 93.4 0.007 0.160 0.174 95.2 0.173 96.0

40 0.2 −0.005 0.163 0.170 93.4 0.165 93.0 −0.001 0.252 0.268 94.6 0.260 94.0
0.5 0.000 0.163 0.172 94.0 0.166 93.0 −0.004 0.238 0.257 95.6 0.249 94.6
0.8 −0.002 0.164 0.172 94.2 0.167 93.8 −0.001 0.218 0.242 96.2 0.235 95.8

60 0.2 −0.005 0.198 0.209 93.4 0.192 90.4 0.008 0.330 0.353 93.8 0.328 92.4
0.5 −0.006 0.198 0.211 92.6 0.193 90.6 0.011 0.324 0.347 95.4 0.321 93.8
0.8 −0.007 0.208 0.210 91.0 0.194 89.4 0.013 0.318 0.336 94.2 0.314 94.0

The iterative method proposed in Section 2.2 can be used
to obtain the solution β̂∗ of S∗

n(β) = 0. It can be shown
that, for some constant t̃, sup0≤t≤t̃ |Ĝ∗(t) −G(t)| = o(n−1/2+ε)
almost surely. Note that the Ui ’s are independent of the data
{(Xik , ∆ik , Zik ), k = 1, . . . ,Ki ; i = 1, . . . ,n}, and thus condi-
tional on the observed data, the only random variable in (5)
is Ui . We can write n1/2S∗

n(β̂) as a sum of n independent ran-
dom vectors. By the Linderberg–Feller CLT, the conditional
distribution of n1/2S∗

n(β̂), given the observed data, is asymp-
totically normal with mean zero, and the conditional covari-
ance function of n1/2S∗

n(β̂) converges to that of n1/2Sn(β0).
Furthermore, by Taylor’s series expansion, it can be shown
that the asymptotic distribution of n1/2(β̂∗ − β̂) is equivalent
to that of n1/2(β̂ − β0).

We examine the following two versions: one-stage perturba-
tion, in which we only generate cluster-level perturbing ran-
dom variables to jitter or shift the estimating function of the
whole cluster at the same level, such that the intracluster
correlation is kept intact; and two-stage perturbation, where
we first perturb the cluster-level estimating function, then
within each cluster (conditional on the perturbed cluster), we
perturb each individual estimating function. By generating
many independent sets of random samples of (U 1, . . . ,Un),
the covariance matrix of n1/2(β̂ − β0) can be estimated
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using the standard sample statistics. When the cluster sizes
are relatively large, the two-stage resampling approaches are
expected to account for both the between-cluster variation
and the within-cluster variation, while the one-stage resam-
pling methods are expected to work better with small cluster
sizes of 2–5.

4. Simulation Studies
To investigate the finite sample properties of the proposed
methodologies, we carried out extensive simulation studies.
Without loss of generality, we focus on the median regression
models with τ = 0.5. The model for generating the failure
time is given by

Tik = β0 + β1Zik + εik , (k = 1, . . . ,K; i = 1, . . . , n), (6)

where the true values of the intercept β0 = 2, the slope β1 =
1, and the errors εi = (εi1, . . . , εiK )′ follow a multivariate nor-
mal distribution with mean zero and a compound symmet-
ric variance–covariance matrix Σ. We define Σ = ρσ211′ +
(1 − ρ)σ2I, where 1 is a vector of one and I is the K × K iden-
tity matrix. We choose the variance σ2 = 1 and the correlation
coefficient ρ = 0.2, 0.5, and 0.8, and the cluster size K = 2,
5, and 20. For K = 2 or 5, the covariate Zik takes a value of 0
or 1, with the probability of 1/2 (individual-level covariate),

Table 2
Parameter estimation bias, standard deviation (SD), standard error (SE), and 95% confidence interval coverage rate (CR) with

cluster size of 5

Bootstrap Perturb Bootstrap Perturb

n c% ρ ∆β0 SD SE CR SE CR ∆β1 SD SE CR SE CR

25 20 0.2 0.013 0.194 0.204 94.2 0.198 94.0 0.010 0.260 0.284 95.8 0.274 95.0
0.5 0.016 0.222 0.224 92.8 0.219 92.8 0.004 0.255 0.284 95.4 0.274 94.6
0.8 0.012 0.250 0.250 92.4 0.246 92.0 0.008 0.256 0.286 96.8 0.278 95.8

40 0.2 0.013 0.228 0.234 93.0 0.220 91.6 0.006 0.346 0.351 93.8 0.332 92.0
0.5 0.017 0.253 0.251 94.0 0.238 91.0 0.001 0.342 0.352 94.0 0.332 92.8
0.8 0.022 0.276 0.275 92.2 0.262 92.6 −0.002 0.336 0.355 94.2 0.335 93.8

60 0.2 0.020 0.272 0.277 92.8 0.244 89.4 −0.012 0.438 0.457 94.4 0.407 90.4
0.5 0.023 0.286 0.291 91.8 0.258 88.2 0.004 0.442 0.454 93.0 0.408 90.0
0.8 0.015 0.304 0.314 92.6 0.279 90.6 0.023 0.444 0.459 95.0 0.414 91.6

50 20 0.2 0.008 0.143 0.143 93.8 0.140 92.2 0.004 0.188 0.198 95.0 0.194 95.2
0.5 0.014 0.157 0.161 94.0 0.158 93.2 −0.007 0.187 0.198 95.6 0.195 94.6
0.8 0.018 0.174 0.177 95.0 0.174 93.6 −0.011 0.184 0.201 96.4 0.197 96.0

40 0.2 0.007 0.164 0.161 93.4 0.155 92.2 0.010 0.240 0.244 93.4 0.237 92.8
0.5 0.010 0.177 0.178 93.6 0.172 92.0 −0.003 0.234 0.243 94.6 0.236 94.4
0.8 0.017 0.190 0.193 94.6 0.186 92.8 −0.004 0.231 0.247 95.6 0.241 95.4

60 0.2 0.004 0.195 0.193 91.6 0.178 89.8 0.005 0.320 0.316 93.8 0.296 91.2
0.5 0.010 0.209 0.207 93.4 0.191 91.0 0.000 0.318 0.318 93.8 0.297 91.8
0.8 0.021 0.230 0.221 92.2 0.205 90.0 −0.006 0.318 0.321 94.8 0.301 93.0

100 20 0.2 0.001 0.097 0.099 94.2 0.098 94.6 0.005 0.138 0.138 96.0 0.137 94.2
0.5 0.003 0.106 0.111 95.6 0.110 95.6 0.003 0.134 0.138 95.8 0.138 95.4
0.8 0.009 0.120 0.126 95.2 0.125 94.6 −0.006 0.139 0.139 94.0 0.139 94.0

40 0.2 0.002 0.111 0.113 95.6 0.110 93.2 0.003 0.170 0.172 94.2 0.168 92.6
0.5 0.004 0.119 0.124 94.4 0.121 95.0 0.000 0.168 0.172 95.4 0.169 95.2
0.8 0.010 0.137 0.138 94.6 0.134 93.8 −0.005 0.174 0.173 95.0 0.170 94.2

60 0.2 0.003 0.128 0.136 95.2 0.127 94.4 0.008 0.215 0.222 94.4 0.211 93.4
0.5 0.006 0.138 0.145 94.2 0.136 92.8 −0.001 0.210 0.221 94.8 0.210 92.8
0.8 0.010 0.154 0.156 94.0 0.146 91.4 −0.004 0.217 0.223 94.2 0.212 93.4

while for K = 20, (Zi1, . . . ,ZiK ) take the same values of 0 or
1 (cluster-level covariate). This is to mimic community ran-
domized studies, where the individuals within a community
receive the same treatment assignment. The number of clus-
ters is 25, 50, or 100 for the cluster size of 2 or 5, and 25 for the
cluster size of 20. To avoid generating negative failure times,
one may take a log transformation of Tik in (6). The censoring
times are generated from an exponential distribution, Exp(λ),
with λ being prespecified as 0.09, 0.22, and 0.4 for achieving
censoring proportions of 20%, 40%, and 60%.

For each configuration, we conducted 500 simulations and
for each data realization we sampled 120 sets for both the
bootstrap and perturbation methods to estimate the standard
errors. The results are summarized in Tables 1, 2, and 3 for
the cluster sizes of 2, 5, and 20, respectively. In these tables,
we present the number of clusters (n), the censoring percent-
age (c%), the intracluster correlation (ρ), the empirical biases
of the estimates of the intercept and slope (∆β0 and ∆β1), the
sample standard deviation of the 500 estimates (SD), the av-
eraged estimated standard errors (SE), and the corresponding
coverage rates of nominal 95% confidence intervals (CR).

The point estimates of the regression coefficients are ap-
proximately unbiased and approach the true values as the
sample size increases. Compared to the SDs, the SEs using
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Table 3
Two-stage parameter estimation bias, standard deviation (SD), standard error (SE), and 95% confidence interval coverage rate

(CR) with n = 25 clusters of size 20

Bootstrap Perturb

One-stage Two-stage One-stage Two-stage

c% ρ ∆β SD SE CR SE CR SE CR SE CR

Intercept
20 0.2 −0.005 0.160 0.150 91.4 0.173 94.4 0.141 88.6 0.187 96.4

0.5 −0.004 0.223 0.215 91.8 0.229 93.0 0.205 89.8 0.237 94.2
0.8 −0.005 0.278 0.276 91.8 0.283 91.8 0.267 91.6 0.291 93.0

40 0.2 −0.009 0.170 0.161 90.8 0.191 94.8 0.148 88.4 0.205 96.2
0.5 −0.008 0.232 0.222 91.4 0.242 93.6 0.209 89.6 0.250 94.2
0.8 −0.008 0.286 0.281 92.2 0.293 93.6 0.267 91.6 0.297 93.0

60 0.2 −0.011 0.189 0.176 91.2 0.217 96.6 0.156 88.2 0.229 96.8
0.5 −0.009 0.250 0.236 92.0 0.265 94.4 0.211 88.0 0.266 94.4
0.8 −0.006 0.302 0.291 92.4 0.311 94.0 0.264 89.2 0.305 93.2

Slope
20 0.2 0.014 0.226 0.223 93.0 0.260 96.4 0.209 90.6 0.279 97.6

0.5 0.018 0.307 0.319 94.0 0.341 95.4 0.302 92.6 0.353 96.2
0.8 0.016 0.385 0.414 94.2 0.427 94.8 0.397 93.6 0.437 94.4

40 0.2 0.018 0.246 0.245 94.0 0.297 96.8 0.225 91.2 0.320 98.4
0.5 0.024 0.324 0.335 93.6 0.370 95.0 0.311 91.6 0.383 96.4
0.8 0.022 0.399 0.426 93.4 0.449 95.2 0.399 91.2 0.456 95.4

60 0.2 0.021 0.287 0.284 93.4 0.358 97.8 0.253 90.8 0.382 98.4
0.5 0.021 0.357 0.363 94.0 0.420 97.2 0.325 91.2 0.429 98.0
0.8 0.022 0.430 0.449 93.2 0.491 95.4 0.402 89.2 0.485 96.4

the bootstrap or perturbation method provide good estimates
of the variability. As expected, the SE decreases with the in-
crease of the sample size and increases with the increase of the
censoring percentage. The 95% confidence interval coverage
rates based on the bootstrap method are satisfactory when
the censoring is not heavy, while the perturbation method
shows relative undercoverage, especially when the number of
clusters is small or the censoring is heavy. As the number of
clusters increases, with light and moderate censoring, the cov-
erage rates using the perturbation method improve and ap-
proach 95%. With the larger cluster size (K = 20), we applied
the two-stage resampling procedures to estimate the variance
as shown in Table 3. The one-stage resampling method seems
to have lower coverage rates and the two-stage methods may
lead to some improvement. These results indicate that the
second stage of bootstrapping or perturbing could be helpful
to account for the within-cluster variation in the situations
with relatively large clusters.

5. An Example
As an illustration, we apply the proposed method to the
OM dataset to investigate the effectiveness of the medical
treatment in prolonging the life of the ventilating tubes. The
dataset consists of information on 78 children, ranging in age
from 6 months to 8 years who had chronic OM with effusion
(the most common form). Through randomization, 40 chil-
dren were assigned to medical treatment and 38 served as
controls. All subjects underwent therapeutic myringotomy for
tympanostomy tube placement (intubation). Children were
examined before and 2 weeks after surgery and every 3 months

thereafter. Censoring was caused by loss to follow-up, and
the censoring rate for these OM data is about 7.7%. The pri-
mary endpoint is the cessation of tube functioning (failure).
Figure 1 shows the Kaplan–Meier survival curves for the treat-
ment and control groups.

We took τ = (.1, .25, .5, .75, .9) and simultaneously ap-
plied the five quantile regression models. Variance estima-
tion was based on 1000 resampling samples for both boot-
strap and perturbation methods. In Table 4, β̂1 refers to the
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Figure 1. Kaplan–Meier curves for the duration of venti-
lating tubes in the otitis media study.
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Table 4
Parameter estimation, standard error (SE), and test statistic (z) under different τ ’s, for

the otitis media data

Bootstrap Perturb Bootstrap Perturb

τ β̂0 SE z SE z β̂1 SE z SE z

0.1 15.000 2.325 6.452 2.165 6.929 3.800 3.473 1.094 3.281 1.158
0.25 9.400 1.415 6.644 1.449 6.487 3.900 1.985 1.965 1.988 1.961
0.5 6.400 0.986 6.491 0.990 6.463 2.800 1.221 2.293 1.278 2.190
0.75 3.100 1.127 2.750 1.112 2.788 2.900 1.578 1.838 1.654 1.754
0.9 1.100 0.814 1.351 0.820 1.342 1.900 1.456 1.305 1.473 1.290

estimated medical treatment effect and z = β̂1/ŜE(β̂1) is the
Wald test statistic. It shows that there is no statistically sig-
nificant treatment effect at the α = .05 significance level with
τ = .1, .75, and .9, but with τ = .25 and .5, the survival time
of the treatment group is substantially longer than that of
the control group. The variance of β̂1 is bigger when τ is near
0 because there is insufficient information for estimating the
treatment effect for small τ . Figure 2 presents global pictures
of β̂0,τ and β̂1,τ with respect to τ . The 95% confidence inter-
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Figure 2. Parameter estimates and corresponding 95% con-
fidence intervals versus quantiles.

vals based on the bootstrap and the perturbation methods are
very close, which are narrower in the middle. Quantiles of the
survival time and their confidence intervals can be estimated
for each group. In particular, the median survival time for
the treatment group is 9.2 months with the 95% confidence
interval of (7.8, 10.6), while that for the control group is 6.4
months with (4.5, 8.3).

6. Remarks
For correlated failure time data, we have studied quantile
regression models, which provide a global assessment of co-
variate effects. We derived several large sample properties of
the parameter estimates, including the strong consistency and
the asymptotic normality. The regression parameters can be
easily estimated through the iterative algorithm, while the
variances can be obtained using the bootstrap method or by
properly perturbing the estimating function. The bootstrap
method is more straightforward to implement in practice, and
the perturbation method requires choosing a suitable random
variable U with mean 1 and variance 1. For the two-stage
perturbation, it is more difficult to control the range of per-
turbing values. With very large perturbing random variables,
we may have some numerical computational problems, while
with very small perturbing random variables, the estimating
function may not be jittered enough to yield good estimates.
Another interesting resampling method (Parzen et al., 1994)
may work here as well, which is to sample from the asymp-
totic distribution of n1/2Sn(β0), and obtain β̂ by solving
n1/2 Sn(β) = s, where s is a p × 1 random vector from
Np(0, Γ̂). This resampling method is similar to the iterative
estimating procedure in Section 2.4 in the spirit that both
methods fix the right-hand side to a constant vector and solve
the equation backward for β̂.

We can allow the dependence between the covariate vector
Z and the censoring variable C by categorizing the covariate Z
into several possible values. With the stratification over Z, we
could replace the censoring time Kaplan–Meier estimator Ĝ(t)
by Ĝ(t | z), where the conditional survival function G(t | z) =
Pr(C ≥ t |Z = z). However, this method may not be practi-
cal for high-dimensional Z or for Z with many categories. To
avoid the curse of dimensionality, an alternative is to model
the censoring times with the covariates Z by the Cox-type
regression model (Lee et al., 1992) and estimate Ĝ(·) based
on the fitted model.

The estimator obtained by minimizing the inverse weighted
estimating function (3) is consistent, which is used as an
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initial value for (2) in our case. Because the difference between
two adjacent estimators decreases stochastically as iteration
increases, we take β̂[M ] as our final estimator in order to reduce
the empirical bias for the finite sample size. As pointed out
by a referee, it would be more flexible and might improve the
convergence by augmenting the weight matrix through W =
diag(c1, . . . , cK ) + {W − diag(c1, . . . , cK )} with appropriately
chosen (c1, . . . , cK ).

In the quantile regression model, it is difficult to incor-
porate time-varying covariates. In heavy censoring cases,
the model may not be well defined if the corresponding
quantile does not exist. Let ξτ be the τth quantile, ξτ =
inf{t :F (t)≥ τ}, with a natural estimator ξ̂τ = inf{t :F̂ (t)≥ τ},
where F̂ (t) = 1 − Ŝ(t) and Ŝ(t) is the Kaplan–Meier estima-
tor of the survival function. If the Ŝ(t) curve does not drop
below τ (ξ̂τ does not exist), the τth quantile regression is not
readily applicable.
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Résumé

En tant qu’alternative à la classique modélisation de la
moyenne par régression, la modélisation des quantiles a été
largement étudiée (surtout celle de la médiane) dans le cas de
données de survie indépendantes. Cependant, les corrélations
naturelles ou artificielles entre données font qu’il est courant
de rencontrer, en recherche biomédicale, des données de survie
multivariées pour lesquelles une corrélation intra-groupe doit
être ajustée. Pour des données de survie corrélées et censurées
à droite, nous explorons ici la modélisation des quantiles et
adaptons une approche par équations d’estimation destinée à
estimer les paramètres sous hypothèse d’indépendance. Nous
adaptons également une version pondérée de cette même ap-
proche, qui en améliore l’efficacité. Nous montrons que les
estimateurs des paramètres sont robustes et suivent asympto-
tiquement une distribution normale. L’estimation de la vari-
ance, obtenue par approximation asymptotique, utilise une
estimation non paramétrique de la densité, cependant que
la matrice de variance-covariance est estimée par bootstrap
et méthodes de ré-échantillonnage perturbé. Des simulations
montrent que l’approche proposée convient aux échantillons
de taille finie. Cette nouvelle démarche est appliquée, pour il-
lustration, à des données issues d’un essai clinique dans l’otite.
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Appendix

All the probability statements regarding T , X, as well as the
density function f(·), and the cumulative distribution func-
tion (c.d.f.) F (·) are conditioning on Z. For ease of exposi-
tion, we suppress the notation of conditional on Z, i.e., (· |Z),
throughout. We assume the following regularity conditions: (i)
The true value of β0 lies in the interior of a bounded convex
region B; (ii) there exists a constant t̃ such that Pr(X ≥ t̃) > 0
and β′Z ≤ t̃ with probability 1, for all β ∈ B; (iii) the covari-
ate vector Z is bounded and the density functions of failure
and censoring times are uniformly bounded; and (iv) the ma-
trix E[f(0)ZZ′] is positive definite, where f(·) is the density
function of errors.

Proof of Theorem 1: Let F (·) be the c.d.f. of εik and we define

S̃n(β) = n−1
n∑
i=1

Ki∑
k=1

Zik [(1 − τ) − F{(β − β0)
′Zik}] .

Thus, we have

Sn(β) − S̃n(β)

= n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′Zik )

Ĝ(β′Zik )
− Pr(Tik ≥ β′Zik )

}
.

Because data from different clusters are independent (Ying
and Wei, 1994), as n → ∞, for some ε > 0,

sup
0≤t≤t̃

|Ĝ(t) −G(t)| = o(n−1/2+ε) a.s. (A.1)

Hence, with the boundness of Z and the cluster sizes, we can
show that, almost surely,

Sn(β) − S̃n(β)

= n−1
n∑
i=1

Ki∑
k=1

Zik
I(Xik ≥ β′Zik ) − Pr(Xik ≥ β′Zik )

G(β′Zik )

+ o(n−1/2+ε).

It follows from the uniform law of large numbers (Pollard,
1990, p. 41) that

sup
β∈B

∣∣∣∣∣n−1
n∑
i=1

Ki∑
k=1

I(Xik ≥ β′Zik ) − Pr(Xik ≥ β′Zik )

G(β′Zik )

∣∣∣∣∣ → 0 a.s.

We define an indicator variable ηik = 1 if the ith cluster has
a kth member, and 0 otherwise. Let ηi = (ηi1, . . . , ηiK )′ and
assume (η1, . . . ,ηn) are i.i.d. With K being the maximum of
the cluster sizes, we thus have,

Sn(β) − S̃n(β)

= n−1
n∑
i=1

K∑
k=1

ηikZik{I(Xik ≥ β′Zik ) − Pr(Xik ≥ β′Zik )}
G(β′Zik )

+ o(n−1/2+ε) a.s.

Define the class of functions (k = 1, . . . ,K),

Fk =

{
ηkZk{I(Xk ≥ β′Zk) − Pr(Xk ≥ β′Zk)}

G(β′Zk)
,

G(·) is bounded away from 0,β ∈ B

}
.

By Example 2.11.16 (van der Vaart and Wellner, 1996, p. 215–
216) and the Donsker preservation theorem, Fk is a Donsker
class, and hence supβ∈B ‖Sn(β) − S̃n(β)‖ = o(n−1/2+ε) a.s.,
as n → ∞.

Now, focusing on S̃n(β),

An(β) =
∂S̃n(β)

∂β
= −n−1

n∑
i=1

Ki∑
k=1

f{(β − β0)
′Zik}ZikZ′

ik .

By the Kolmogorov strong law of large numbers (SLLN),
An(β) → −ζE[f{(β − β0)

′Z11}Z11Z′
11], a.s., and thus

An(β0) → A, which is negative definite.
It follows from F (0) = 1 − τ that S̃n(β0) = 0. By the stan-

dard inverse function theorem and coupled with the negative
definiteness of A, it entails the strong consistency of β̂.
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Proof of Theorem 2: By adding and subtracting the same
term ZikI(Xik ≥ β′

0Zik )/G(β′
0Zik ),

Sn(β0) = n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′

0Zik )

G(β′
0Zik )

− τ

}

−
∫ ∞

0

Ĝ(t) −G(t)

Ĝ(t)G(t)
dQ(t),

where Q(t) = n−1
∑n

i=1

∑Ki

k=1 I{β
′
0Zik ≤ t ∧Xik}Zik .

In terms of the martingale representation (Fleming and
Harrington, 1991),

Ĝ(t) −G(t)

G(t)
= −

∫ t

0

Ĝ(u−)

G(u)

{
dN̄G(u)

Ȳ (u)
− dΛG(u)

}
, (A.2)

which is asymptotically equivalent to −
∫ t

0 dM̄G(u)/Ȳ (u) with

dM̄G(t) = dN̄G(t) − Ȳ (t) dΛG(t).
If we plug in (A.2) and interchange the integrals, the second

term of Sn(β0) is asymptotically equivalent to∫ ∞

0

1

Ĝ(t)

∫ t

0

dM̄G(u)

Ȳ (u)
dQ(u) =

∫ ∞

0

dM̄G(u)

Ȳ (u)

∫ ∞

u

dQ(t)

Ĝ(t)
.

With the definition of Q(t),∫ ∞

u

dQ(t)

Ĝ(t)
= n−1

n∑
i=1

Ki∑
k=1

Zik

G(β′
0Zik )

I(β′
0Zik ≥ u)

× I(Tik ≥ β′
0Zik )I(Cik ≥ β′

0Zik ) + op(n
−1/2+ε),

which converges almost surely to q(u)τ by the Kolmogorov
SLLN.

Using the functional CLT (Pollard, 1990, Theorem 10.6),

we can show that n−1/2
∑n

i=1

∑Ki

k=1 MGik (t) converges in dis-
tribution to a zero-mean Gaussian process with continuous
sample paths. It follows from the Skorohod strong embedding
(Shorack and Wellner, 1986) and the Lemma A.3 in Bilias,
Gu, and Ying (1997) that, in probability,

n−1/2

∫ ∞

0

{∫ ∞

u

dQ(t)

Ĝ(t)

1

n−1Ȳ (u)
− q(u)τ

π(u)

}
dM̄G(u) → 0.

Finally, the statistic n1/2Sn(β0) is asymptotically equiva-
lent to n−1/2

∑n

i=1 ξi, where ξi is given by (4). By the mul-
tivariate CLT, the random vector n1/2Sn(β0) converges to a
normal distribution with mean zero and a variance–covariance
matrix Γ = E(ξ1ξ

′
1).

Proof of Theorem 3: Given any fixed constant c, for all β in
‖β − β0‖ < cn−1/3, based on Lemma 1 of Ying et al. (1995),

Sn(β) = Sn(β0) + n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′Zik )

G(β′Zik )
− τ

}

−n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′

0Zik )

G(β′
0Zik )

− τ

}

+n−1
n∑
i=1

Ki∑
k=1

Zik{I(Xik ≥ β′Zik ) − I(Xik ≥ β′
0Zik )}

×
{

1

Ĝ(β′
0Zik )

− 1

G(β′
0Zik )

}
+ op(n

−1/2).

By the lemma in Jung (1996, p. 252) and (A.1), it can be
shown that the fourth term on the right-hand side of Sn(β)
is op(n

−1/2) and

n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′Zik )

G(β′Zik )
− τ

}

−n−1
n∑
i=1

Ki∑
k=1

Zik

{
I(Xik ≥ β′

0Zik )

G(β′
0Zik )

− τ

}
= S̃n(β) + op(n

−1/2).

Hence, we have Sn(β) = Sn(β0) + S̃n(β) + op(n
−1/2). Taking

Taylor’s expansion of S̃n(β) at β0 and noting that S̃n(β0) = 0
and ∂S̃n(β0)/∂β → A, we have

Sn(β) = Sn(β0) + A(β − β0) + op(n
−1/2 ∨ ‖β − β0‖),

which entails that n1/2(β̂ − β0) converges to a normal dis-
tribution with mean zero and variance A−1ΓA−1 in any
n−1/3-neighborhood of β0.


