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Summary. Due to natural or artificial clustering, multivariate survival data often arise in biomedical
studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of
subjects in the population who are not expected to experience the event of interest are considered to
be “cured” or insusceptible. To model correlated or clustered failure time data incorporating a surviving
fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based
on biological considerations while the other is motivated from the Cox proportional hazards frailty model.
We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional
distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the
proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction.
We illustrate the cure rate frailty models with a root canal therapy data set.

Key words: Bayesian inference; Cure fraction; Frailty model; Gibbs sampling; Multivariate failure time
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1. Introduction
As possibly the last endeavor to save a natural tooth be-
fore extraction, root canal therapy (RCT) corrects the dis-
order and dysfunction of the dental pulp when the caries
or restorations are deep. RCT usually involves removing the
tooth crown and the affected pulpal tissue, followed by clean-
ing the surrounding infected area to provide a healthy and
bondable surface for a permanent filler. After filling, a crown is
fabricated to complete the procedure. Many root-canal-filled
(RCF) teeth last for a lifetime while some may be lost shortly
after completion of endodontic therapy. Non-RCF teeth can
be lost due to nonrestorable caries, advanced alveolar bone
loss, or catastrophic fracture. Besides the above reasons, RCF
teeth can be lost due to endodontic mishaps (e.g., perfora-
tion) or postendodontic restorations (e.g., vertical root frac-
ture from intracanal posts).

To quantify the degree to which endodontic involvement
affects tooth survival, a retrospective RCT study was con-
ducted in the School of Dentistry at the University of North
Carolina at Chapel Hill (Caplan et al., 2005). Using databases
of the Kaiser Permanente Northwest Division Dental Care
Program, and following the criteria of the study design, 202
eligible patients were identified. Each patient contributed data
from one RCF tooth and one similar non-RCF tooth. If the
contralateral tooth was present, it was selected as the match-
ing non-RCF tooth. If that tooth was missing or was already
endodontically treated, a tooth of the same type (i.e., ante-
rior, premolar, or molar) adjacent to the contralateral tooth
was selected. Follow-up for both the RCF and non-RCF teeth
started on the index date and continued through the date

of extraction or the end of the study, whichever came first.
Time to extraction was the outcome of interest which could
be censored by the study termination or by the RCT. From a
dental scientific perspective, many RCF teeth are considered
sound and will last for a lifetime after successful endodontical
treatment, and thus can be viewed as “cured.”

If a significant number of patients are “cured” and thus
risk-free of the disease of interest, the population is then a
mixture of susceptible and insusceptible subjects. In these
cases, the Cox (1972) proportional hazards model may not be
appropriate, because it inherently assumes that all the sub-
jects have the same susceptibility to the disease and will even-
tually experience the event over a sufficiently long period of
follow-up. Cure rate models are intended to model failure time
data with a surviving fraction, which becomes increasingly
important and popular in clinical trials and medical research,
especially in various types of oncology studies, such as breast
cancer, leukemia, and melanoma. Let S∗(t |Z∗

i) be a proper
survival function (i.e., limt→∞S∗(t |Z∗

i) = 0), where Zi and Z∗
i

may share common components and the first component of
Zi is 1. The mixture cure model proposed by Berkson and
Gage (1952) assumes that a certain probability θ(Zi ) of be-
ing cured is mixed with the remaining 1 − θ(Zi) of not being
cured,

Spop

(
t |Zi,Z∗

i

)
= θ(Zi) + {1 − θ(Zi)}S∗(t |Z∗

i

)
, (1)

where Spop(t |Zi,Z∗
i) is the population survival function

and S∗(t |Z∗
i) is that for the uncured subjects. The cure

fraction in model (1) is limt→∞Spop(t |Zi,Z∗
i) = θ(Zi). A

logistic regression structure is usually assumed so that
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θ(Zi) = exp(β′Zi)/{1 + exp(β′Zi)}, where β is the parame-
ter vector of interest including an intercept. The mixture cure
model (1) has been extensively studied in the literature, in-
cluding Gray and Tsiatis (1989), Kuk and Chen (1992), Taylor
(1995), Maller and Zhou (1996), Sy and Taylor (2000), Peng
and Dear (2000), and Betensky and Schoenfeld (2001), among
others. Although (1) is intuitively attractive and widely used,
it does not have a proportional hazards structure in the pres-
ence of covariates, which is an undesirable feature when doing
covariate analysis. In the Bayesian computation, if β takes an
improper uniform prior, i.e., π(β) ∝ 1, the posterior distri-
bution based on (1) is improper (Chen, Ibrahim, and Sinha,
1999). In particular, when modeling the heterogeneity in the
population using frailty models, it would be more appealing
and convenient to employ the proportional hazards modeling
scheme.

An alternative definition of the univariate cure rate model,
which has been investigated by Yakovlev and Tsodikov
(1996), Tsodikov (1998), Chen et al. (1999), and Ibrahim,
Chen, and Sinha (2001a) among others, is given by

Spop(t |Zi) = exp{−θ(Zi)F (t)}, (2)

where F(t) is a proper cumulative distribution function. The
corresponding cure rate in model (2) is limt→∞Spop(t |Zi) =
exp{−θ(Zi)}. For subject i, θ(Zi ) is linked to the covariates
via the exponential relation θ(Zi) = exp(β′Zi). For a more de-
tailed discussion of (2), see Chapter 5 of the book by Ibrahim,
Chen, and Sinha (2001b).

The aforementioned methods are based on a critical as-
sumption that the survival times are independent. How-
ever, we often encounter multivariate failure time data in
biomedical research where the correlation may be induced
by natural or artificial clustering effects. In family studies of
genetic diseases, litter-matched mice experiments, or ophthal-
mologic research, observations in the same cluster or group
may be correlated. The underlying correlation needs to be
carefully adjusted to ensure valid estimation and inference. In
the RCT example, each subject contributed a pair of observa-
tions from RCF and non-RCF teeth. Clearly, data collected on
two teeth from the same individual cannot be assumed to be
independent.

Extensive research has been carried out for multivariate
failure time data. The frailty model and the marginal model
are the most popular approaches. Focusing on subject-specific
effects, the frailty model explicitly formulates the nature of
the underlying dependence structure. The marginal model
takes a population-average approach to model the marginal
mean while treating the correlation as a nuisance. In this arti-
cle, we concentrate on the frailty model which accommodates
the intraclass correlation through an unobservable random ef-
fect, or a frailty.

For the lth subject in the ith cluster, with a covariate vector
Zil (i = 1, . . . ,n; l = 1, . . . ,Li ), the usual Cox shared frailty
model is given by

λ(t |Zil,Wi) = λ(t)Wi exp(β′Zil), (3)

where λ(t) is the unknown and unspecified baseline hazard
function and Wi is the unobservable frailty induced by the ith
cluster. Conditional on Wi , the failure times in cluster i are
assumed to be independent. The most studied parametric as-
sumption is that the Wi ’s are independent and identically dis-

tributed (i.i.d.) from a gamma density with mean 1 (Clayton,
1978). Another popular distribution for Wi is the positive
stable distribution (Hougaard, 2000), which preserves the
proportional hazards structure unconditionally (after inte-
grating Wi out). Semiparametric Bayesian methods for mul-
tivariate failure time data have been proposed in various
contexts (Clayton, 1991; Sinha, 1993; Sargent, 1998; Qiou,
Ravishanker, and Dey, 1999; among others).

However, limited attention has been paid to the research in
multivariate cure rate models. In the frequentist framework,
Chatterjee and Shih (2001) proposed a marginal approach
using bivariate Copula models. Price and Manatunga (2001)
imposed frailty to account for correlation and conducted the
maximum likelihood estimation under a parametric model
assumption. Both methods were based on the mixture cure
model (1). In the Bayesian paradigm, Chen, Ibrahim, and
Sinha (2002) generalized the work of Chen et al. (1999) to
bivariate failure time data by introducing a positive stable
frailty, where an illustrative example was given for simulta-
neously modeling two distinct events, i.e., time to cancer re-
lapse and time to death. A recent review paper by Tsodikov,
Ibrahim, and Yakovlev (2003) gives a comprehensive treat-
ment and discussion of the development of the cure rate
model (2).

Motivated by the RCT study, in which “cure” is appar-
ently a possibility and correlation naturally arises from the
paired teeth of the same subject, we propose two new cure
rate frailty models for multivariate failure time data with a
surviving fraction. The proposed methods are closely related
to the univariate cure rate model (2), because it might not
be intuitively convenient to incorporate frailty to model (1),
and the interpretation could be potentially cumbersome. We
formulate the model in a Bayesian framework, so that the
prior information can be easily incorporated through histori-
cal data.

The rest of this article is organized as follows. In Section 2,
we motivate one form of a cure rate frailty model from a
clonogenic tumor cell example, and propose the other by
mimicking the Cox frailty model. In Section 3, we derive
the likelihood functions for the proposed cure frailty models
within the Bayesian paradigm, and obtain the full conditional
distributions based on suitable prior distributions. In Sec-
tion 4, we propose a model selection technique using the de-
viance information criterion (DIC) proposed by Spiegelhalter
et al. (2002). We illustrate the proposed methods with the
RCT example in Section 5, and provide concluding remarks in
Section 6.

2. Cure Rate Frailty Models
We introduce a cure rate frailty model that is motivated by
the following clonogenic tumor cell example. For the ith in-
dividual in the population, let Ni be the number of tumor
cells that have the potential of metastasizing, i.e., Ni is the
number of metastasis-competent tumor cells. Assume that Ni

has a Poisson distribution with mean θ(Zi ). Given Ni = K,
let (Xi1, . . . ,XiK ) be the promotion times for all the K tu-
mor cells in the ith subject. That is Xik (k = 1, . . . ,K) is the
time for the kth metastasis-competent tumor cell in subject
i to produce a detectable tumor mass. Because the Ni cells
belong to the same subject, we assume a random effect Wi for
subject i to account for the within-subject correlation among
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the Xik ’s. Conditional on Ni and Wi , we assume that the Xik ’s
are i.i.d. from F(t). Here, we emphasize that both Ni and
(Xi1, . . . ,XiNi

) are unobservable random variables. The time
to cancer relapse for the ith subject, which is observed, is de-
fined as Ti = min(Xi1, . . . ,XiNi

). Therefore, the population
survival function for the ith subject is given by

Spop(t |Zi,Wi)

= Pr(Ni = 0) +

∞∑
K=1

Pr(Ti > t |Ni = K,Wi)Pr(Ni = K)

= Pr(Ni = 0) +

∞∑
K=1

Pr(Xi1 > t, . . . ,XiK > t |Ni

= K,Wi)Pr(Ni = K)

= exp{−θ(Zi)} +

∞∑
K=1

exp{−WiΛ(t)K}

×θ(Zi)
K exp{−θ(Zi)}

K!

= exp[−θ(Zi) + θ(Zi) exp{−WiΛ(t)}], (4)

where Λ(t) is the common cumulative hazard function of the
Xik ’s. Note that λ(t) = dΛ(t)/dt, then the population hazard
function of (4) is

λpop(t |Zi,Wi) = θ(Zi)Wiλ(t) exp{−WiΛ(t)}. (5)

Model (5), referred to as the promotion time cure rate frailty
model, is a generalization of the work of Chen et al. (1999),
which did not consider the heterogeneity of metastasizing tu-
mor cells from different subjects. The formulation of model (5)
is substantially different from that of Chen et al. (2002) where
they incorporated the frailty through the Poisson means to
model parallel distinct types of failures. In contrast, we focus
on the time to the same type of event while correlation arises
from the clustering effects.

We assume Wi in (5) to be a random variable from a gamma
distribution with mean 1 and variance η−1, i.e., Wi ∼ Ga(η, η).
In the limit η → ∞, model (5) reduces to the univariate cure
rate model (2). Aside from the biological motivation, model
(5) is suitable for correlated failure time data with a cure
fraction in a wide variety of contexts. Thus, clustered survival
data with a cure fraction, which may not “fit” the definition
of a metastasizing tumor cell given above, can still be modeled
by (5).

For ease of exposition, we formulate the cure rate frailty
models in the following setup. Suppose that there are n clus-
ters, and within cluster i, there are Li subjects. For i =
1, . . . ,n, and l = 1, . . . ,Li , let Til be the failure time for the
lth member in the ith cluster, Cil be the censoring variable,
and Yil = min(Til , Cil ) be the observed time. Define the cen-
soring indicator νil = I(Til ≤ Cil ), where I(·) is the indica-
tor function. Let Zil be the (p + 1) × 1 vector of bounded
covariates, where the first component of Zil is 1 correspond-
ing to the intercept. Failure times are assumed to be inde-
pendent of censoring times conditional on Zil . Within clus-
ter i, {(Til , Cil , Zil), l = 1, . . . ,Li} may be dependent but
exchangeable.

We first propose a promotion time cure rate frailty model,
of which the population hazard is

λ(1)
pop(t |Zil,Wi) = λ(t)Wi exp{−Λ(t)Wi} exp(β′Zil). (6)

As an alternative, we then introduce a different form of
cure rate frailty model that is analogous to the Cox frailty
model (3). Model (2) can be rewritten as λpop(t |Zi) =
f(t) exp(β′Zi), where f(t) is an unknown baseline density
function. Hence, we propose the following cure gamma frailty
model,

λ(2)
pop(t |Zil,Wi) = f(t)Wi exp(β′Zil). (7)

Both cure rate frailty models (6) and (7) are constructed to
take the within-cluster correlation into consideration, which
apparently reduces to the univariate case if Wi ≡ 1.

3. Likelihoods and Full Conditionals
We assume a piecewise exponential distribution for the base-
line hazard function λ(t). The piecewise exponential model
is useful and simple for modeling survival data, which serves
as a benchmark for comparisons with other semiparametric
and fully parametric models. The likelihood function is con-
structed as follows. Let J be the finite number of partitions
of the time axis, i.e., 0 < s1 < · · · < sJ , with sJ > yil for
i = 1, . . . ,n; l = 1, . . . ,Li . Thus, we have J intervals, (0, s1],
(s1, s2], . . . , (sJ−1, sJ ], where each interval contains at least
one failure and a reasonable way to allocate the data is to
balance the number of events among intervals. The piecewise
exponential model assumes that λ(y) = λj for y ∈ (sj−1, sj ],
j = 1, . . . , J . Define δilj = 1 if the lth subject in the ith cluster
fails or is censored in the jth interval, and 0 otherwise. When
J = 1, namely with no partition, the baseline hazard reduces
to that of an exponential distribution with λ(t) ≡ λ1. By in-
creasing J, we would obtain finer partitions of the time scale
such that a more flexible structure of the underlying baseline
hazard can be captured. Let D denote the observed data, W =
(W 1, . . . ,Wn)

′ and λ = (λ1, . . . ,λJ)′. The random effects
Wi (i = 1, . . . ,n) are usually assumed to follow a gamma dis-
tribution, Wi ∼ Ga(η, η), with mean 1 and variance η−1. Thus,
the conditional likelihood function concerning model (6) is

given by L(1)(β,λ |W,D) =
∏n

i=1 L
(1)
i (β,λ |Wi,D), where

L(1)
i (β,λ |Wi,D)

=

Li∏
l=1

[
λ(yil)Wi exp{−Λ(yil)Wi} exp(β′Zil)

]νil
× exp{−[1 − exp{−Λ(yil)Wi}] exp(β′Zil)}

=

Li∏
l=1

J∏
j=1

{
λjWi exp

[
−

{
λj(yil − sj−1)

+

j−1∑
q=1

λq(sq − sq−1)

}
Wi

]
exp(β′Zil)

}νilδilj

× exp

{
−δilj

(
1 − exp

[
−

{
λj(yil − sj−1)

+

j−1∑
q=1

λq(sq − sq−1)

}
Wi

])
exp(β′Zil)

}
.
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Similarly, for model (7), L(2)(β,λ |W,D) =
∏n

i=1 L
(2)
i (β,

λ |Wi,D), where

L(2)
i (β,λ |Wi,D)

=

Li∏
l=1

{f(yil)Wi exp(β′Zil)}νil

× exp{−F (yil)Wi exp(β′Zil)}

=

Li∏
l=1

J∏
j=1

[
λj exp

{
−λj(yil − sj−1)

−
j−1∑
q=1

λq(sq − sq−1)

}
Wi exp(β′Zil)

]νilδilj

× exp

{
−δilj

[
1 − exp

{
−λj(yil − sj−1)

−
j−1∑
q=1

λq(sq − sq−1)

}]
Wi exp(β′Zil)

}
.

We take noninformative priors for all the parameters such
that the likelihood functions dominate the posterior distribu-
tions. Without loss of generality, we assume that β and λ are
independent, and their components are independent, a priori.
Specifically, we take βk ∼ N(µ, σ2) for k = 0, 1, . . . , p, and
λj ∼ Ga(α, γ) for j = 1, . . . , J . Furthermore, we take Wi ∼
Ga(η, η) and assume that η ∼ Ga(a, b), where the hyperpa-
rameters a and b are chosen to yield a large prior variance
for Wi .

Let [U |V ] denote the posterior distribution of U given V.
For m = 1, 2; k = 0, 1, . . . , p; j = 1, . . . , J ; and i = 1, . . . ,n,
the full conditional distributions of the parameters are given
as follows:[

βk |β(−k),λ,W,D
]
∝ L(m)(β,λ |W,D)π(βk),[

λj |β,λ(−j),W,D
]
∝ L(m)(β,λ |W,D)π(λj),[

Wi |β,λ,W(−i), η,D
]
∝ L(m)

i (β,λ |Wi,D)W η−1
i exp(−ηWi),

[η |W,D] ∝
ηnη+a−1

(
n∏
i=1

Wi

)η−1

exp

{
−η

(
n∑
i=1

Wi + b

)}

{Γ(η)}n ,

where β(−k) is the rest of β after deleting the kth component,
λ(−j) and W(−i) are defined similarly, and π(βk) and π(λj) are
the prior densities. In particular for model (7), i.e., m = 2,
due to the conjugate property, the complete conditional dis-
tribution of Wi has the closed form of

Ga

(
η +

Li∑
l=1

νil, η +

Li∑
l=1

J∑
j=1

δilj

[
1 − exp

{
−λj(yil − sj−1)

−
j−1∑
q=1

λq(sq − sq−1)

}]
exp(β′Zil)

)
.

4. Model Adequacy Evaluation
An important part of selecting regression models is evaluating
the adequacy of the model fit. It is critical to compare several
competing models for a given data set and select the one that
best fits the data.

The DIC, recently proposed by Spiegelhalter et al. (2002),
is a Bayesian model selection criterion, which is given by

DIC = Dev(β,λ) + pDev .

The term pDev is a penalty term for model complexity, which is
reflected by the effective number of parameters in the model.
The deviance is obtained from the conditional likelihood, i.e.,
Dev(β,λ) = −2 logL(β,λ |W,D),Dev(β,λ) is the posterior
mean of Dev(β,λ), pDev = Dev(β,λ) − Dev(β̄, λ̄) and thus

DIC = 2Dev(β,λ) − Dev(β̄, λ̄) ,

where β̄ and λ̄ are the posterior means of β and λ, re-
spectively. With noninformative priors, DIC is approximately
equivalent to the Akaike information criterion (AIC) proposed
by Akaike (1973). Specifically, for the proposed cure frailty
models, m = 1 and 2,

DICm = − 4

G

G∑
g=1

logL(m)
(
β[g],λ[g]

∣∣W[g],D
)

+2 logL(m)(β̄, λ̄ |W̄,D),

where β[g], λ[g], and W[g] are the corresponding posterior sam-
ples of the gth Gibbs iteration, W̄ is the posterior mean, and
G is the number of Gibbs iterations after burn-in. The smaller
the DIC value, the better the model fits.

5. Example
As an illustration, we applied the proposed methods to the
RCT data. In this analysis, we had three covariates: the RCF
tooth indicator, tooth type, and pocket variables. We com-
bined the anterior and premolar teeth together (nonmolar),
because there were relatively fewer anterior teeth. Among 404
teeth in the data set, there were 176 molars and 228 non-
molars (64 anteriors and 164 premolars). Pocket depths had
been recorded at six sites for each tooth. If at least one of the
six periodontal pockets was ≥5 mm, a binary variable took a
value of 1 (31%), and was otherwise 0 (69%). Figure 1 shows
the Kaplan–Meier survival curves for four groups stratified by
the root canal treatment and tooth type. The appropriateness
of the application of cure rate models needs to be examined
cautiously. The survival curves level off and show plateaus at
the tail parts, which suggests a possibility of cure. The length
of the follow-up was 2916 days, and the last event occurred
at the 2678th day for the RCF group and the 2662th day for
the non-RCF group. There were 56 teeth censored between
the last event and the end of the study for each group. A gen-
eral guideline for the proper usage of cure rate models is to
have a sufficient period of follow-up, and a strong biological
justification for the cure or immune possibility, as in the RCT
study.

We incorporated a gamma frailty Wi to account for the
correlated observations from the paired teeth of the same pa-
tient. We took β = (β0, β1, β2, β3)

′ and λ = (λ1, . . . ,λJ)′ to
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Figure 1. Kaplan–Meier curves stratified by the root canal treatment and tooth type.

be independent, a priori, and gave them noninformative prior
distributions, for example, βk ∼ N(0, 100) for k = 0, 1, 2, 3,
and λj ∼ Ga(α, γ) with α = 2 and γ = 0.1, and indepen-
dent for j = 1, . . . , J . For the frailty, we took Wi ∼ Ga(η, η),
where η ∼ Ga(a, b) and we specified a = 2 and b = 100. We
chose priors in such a way that the likelihood functions clearly
dominated the posterior distributions. We took the partitions
of the time scale, J = 1 up to J = 5. A larger J gives more
flexibility to model the baseline hazard, whereas at the same
time it brings in more unknown parameters (the λj ’s) that
need to be estimated.

For comparison, we also applied the Cox shared gamma
frailty model (3) to the data, for which the corresponding
conditional likelihood based on the piecewise constant hazards
is LCox(β,λ |W,D) =

∏n

i=1 LCox
i (β,λ |Wi,D), where

LCox
i (β,λ |Wi,D)

=

Li∏
l=1

{λ(yil)Wi exp(β′Zil)}νil

× exp

[
−

∫ yil

0

{λ(t)Wi exp(β′Zil)} dt
]

=

Li∏
l=1

J∏
j=1

{λjWi exp(β′Zil)}δiljνil

× exp

[
−δilj

{
λj(yil − sj−1)

+

j−1∑
q=1

λq(sq − sq−1)

}
Wi exp(β′Zil)

]
.

We ran 30,000 Gibbs samples for each Markov Chain Monte
Carlo (MCMC) chain and recorded a sample every five iter-
ations, after 3000 burn-ins. The chains appeared to mix well
and the convergence could usually be achieved after 500 it-
erations. We used the diagnostic methods recommended by
Cowles and Carlin (1996) to monitor the chains. Table 1 shows
the DICs with respect to three competing models and five
different J’s. The DIC statistics clearly indicate that the pro-
motion time frailty model with J = 3 is the best fitting one,
with the smallest DIC = 1818.64. Table 2 summarizes the
analysis of the RCT data under the Cox gamma frailty model
and the proposed cure rate frailty models, using J = 1 and
3, respectively. We present the posterior mean, standard de-
viation, and 95% highest posterior density (HPD) interval for
each parameter. The three different models consistently show
that the root canal treatment significantly reduced tooth sur-
vival, whereas the tooth type and pocket variables were not
important factors. We carried out sensitivity analyses on the
prior distributions by varying the hyperparameters (σ and γ).
The results in Table 3 demonstrate that the posterior estima-
tion is very robust with respect to a wide range of priors.

Table 1
Model selection criterion based on DIC with respect to J, for

the RCT data

J

Frailty model 1 2 3 4 5

Cox gamma 2016.99 1988.75 1982.56 1986.36 1988.53
Promotion time 2011.10 1950.43 1818.64 1858.01 1915.93
Cure gamma 2013.17 1997.15 1998.38 2003.41 2007.94
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Table 2
The posterior mean, standard deviation, and 95% HPD interval for the RCT data

J Frailty model Covariate Mean Std. Dev. 95% HPD interval

1 Cox gamma Root 2.1992 0.2633 (1.7106, 2.7392)
Molar −0.0265 0.3498 (−0.7342, 0.6218)
Pocket 0.0680 0.3228 (−0.5574, 0.7046)
Frailty (η) 0.2852 0.0353 (0.2192, 0.3545)

Promotion time Intercept −0.1949 0.6382 (−1.3048, 1.1184)
Root 2.2092 0.2772 (1.7108, 2.8003)
Molar 0.0338 0.3354 (−0.6279, 0.6911)
Pocket 0.1380 0.3164 (−0.4595, 0.7800)
Frailty (η) 0.2733 0.0356 (0.2068, 0.3427)

Cure gamma Intercept −0.0798 0.7629 (−1.4823, 1.5051)
Root 2.3089 0.2737 (1.7791, 2.8420)
Molar 0.0493 0.3700 (−0.6472, 0.8095)
Pocket 0.0939 0.3239 (−0.5045, 0.7376)
Frailty (η) 0.2646 0.0265 (0.2137, 0.3177)

3 Cox gamma Root 2.3198 0.2772 (1.8133, 2.8878)
Molar −0.2749 0.3746 (−0.9586, 0.5092)
Pocket −0.0606 0.3361 (−0.7247, 0.5843)
Frailty (η) 0.2551 0.0280 (0.2034, 0.3109)

Promotion time Intercept −1.5714 0.3276 (−2.1989, −0.9273)
Root 2.0613 0.2741 (1.5256, 2.5935)
Molar −0.0908 0.2765 (−0.6293, 0.4602)
Pocket 0.2591 0.2731 (−0.2683, 0.8071)
Frailty (η) 0.2425 0.0243 (0.1952, 0.2911)

Cure gamma Intercept −1.8507 0.3834 (−2.5860, −1.0704)
Root 2.5156 0.2958 (1.9098, 3.0688)
Molar 0.0839 0.3575 (−0.5938, 0.8013)
Pocket 0.1443 0.3316 (−0.5073, 0.7856)
Frailty (η) 0.2711 0.0282 (0.2154, 0.3242)

Table 3
Sensitivity analysis with different priors, based on the

promotion time frailty model with J = 3

Std. 95% HPD
σ γ Covariate Mean Dev. interval

5 0.1 Intercept −1.6155 0.3288 (−2.2359, −0.9502)
Root 2.0712 0.2789 (1.4973, 2.5884)
Molar −0.0938 0.2829 (−0.6770, 0.4309)
Pocket 0.2699 0.2746 (−0.2594, 0.8162)
Frailty (η) 0.2414 0.0292 (0.1890, 0.3015)

100 0.1 Intercept −1.6279 0.3384 (−2.3064, −0.9908)
Root 2.0708 0.2747 (1.5857, 2.6549)
Molar −0.1156 0.2793 (−0.6547, 0.4321)
Pocket 0.3237 0.2793 (−0.1996, 0.8959)
Frailty (η) 0.2398 0.0240 (0.1947, 0.2873)

10 0.5 Intercept −1.5815 0.3262 (−2.2497, −0.9679)
Root 2.0855 0.2797 (1.5463, 2.6371)
Molar −0.1014 0.2876 (−0.6502, 0.4832)
Pocket 0.2799 0.2760 (−0.2626, 0.8052)
Frailty (η) 0.2265 0.0254 (0.1809, 0.2786)

10 0.01 Intercept −1.6320 0.3318 (−2.2765, −0.9642)
Root 2.0445 0.2754 (1.4965, 2.5683)
Molar −0.1054 0.2658 (−0.6242, 0.3978)
Pocket 0.3077 0.2717 (−0.2359, 0.8179)
Frailty (η) 0.2589 0.0287 (0.2064, 0.3174)

6. Remarks
We have proposed cure rate frailty models for multivariate
failure time data incorporating a survival fraction in the
Bayesian paradigm. The proposed methods have attractive
features in model formulation and Bayesian computation.

Model (6) has a strong biological motivation while model (7) is
statistically and computationally desirable. It is particularly
appealing that the full conditional distribution of Wi under
model (7) has a closed form due to conjugacy. Both cure frailty
models reduce to the same univariate case (2) when all the
observations are independent. The existence of insusceptible
or immune individuals in the population is the key condition
for the applicability of cure rate models. In such situations,
censored data are a mixture of cured subjects and uncured
subjects who are censored due to incomplete follow-up. For
i.i.d. survival data, Maller and Zhou (1995) have investigated
the Kaplan–Meier estimator of the cumulative risk function
for testing for sufficient follow-up and a heterogeneous popu-
lation. The development of a corresponding formal test with
correlated failure time data is important and requires further
investigation.
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