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SUMMARY

Marginal additive hazards models are considered for multivariate survival data in which
individuals may experience events of several types and there may also be correlation
between individuals. Estimators are proposed for the parameters of such models and
for the baseline hazard functions. The estimators of the regression coefficients are
shown asymptotically to follow a multivariate normal distribution with a sandwich-
type covariance matrix that can be consistently estimated. The estimated baseline and
subject-specific cumulative hazard processes are shown to converge weakly to a zero-
mean Gaussian random field. The weak convergence properties for the corresponding
survival processes are established. A resampling technique is proposed for constructing
simultaneous confidence bands for the survival curve of a specific subject. The method-
ology is extended to a multivariate version of a class of partly parametric additive
hazards model. Simulation studies are conducted to assess finite sample properties, and
the method is illustrated with an application to development of coronary heart diseases
and cardiovascular accidents in the Framingham Heart Study.

Some key words: Censoring; Confidence band; Correlated survival data; Counting process; Estimating
equation; Semiparametric; Survival function.

1. INTRODUCTION

The additive hazards model, in which covariate effects are expressed through hazard
differences rather than hazard ratios as in Cox’s (1972, 1975) proportional hazards
model, has often been suggested; see for example Breslow & Day (1980, pp. 53-9; 1987,
pp. 122-31) and Cox & Oakes (1984, pp. 73—4). O’Neill (1986) has shown that use of the
proportional hazards model can result in serious bias when the additive hazards model
is correct.

For independent survival data subject to right-censoring, semiparametric estimation of
the additive hazards model when the baseline hazard function is unspecified has been
studied by many authors. Lin & Ying (1994) derived large-sample theory paralleling the
martingale approach developed by Andersen & Gill (1982) for Cox’s model. The additive
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hazards model has been applied to interval censored data by Lin et al. (1998) and
Martinussen & Scheike (2002), to measurement error problems by Kulich & Lin (2000),
to frailty models by Lin & Ying (1997) and to cumulative incidence rates by Shen & Chen
(1999). Extensions of the additive hazards model which allow time-varying coefficients
have been proposed by several authors. Huffer & McKeague (1991) studied weighted least
squares estimation for a nonparametric additive risk model first proposed by Aalen
(1980, 1989). McKeague & Sasieni (1994) developed a partly parametric additive hazards
model that includes both time-dependent and constant regression coefficients. Klein &
Moeschberger (1997, Ch. 10) summarised this work; see also Scheike (2002).

All this work has assumed mutual independence of the survival times. Correlated or
clustered survival data are often analysed by frailty models, described for example in
Hougaard (2000), or by marginal models, reviewed by Lin (1994). Marginal models for
events of different types occurring to the same subject will usually involve different baseline
hazards for each type of event; see Wei et al. (1989). In contrast, Lee et al. (1992) discussed
marginal models for highly stratified, i.e. clustered, data with events of the same type, so
that a single baseline hazard function is appropriate. In this paper, we formulate and
analyse a marginal additive hazards model for survival data which include both clustering
of individuals and events of several types. Our work complements that of Spiekerman &
Lin (1998) and Clegg et al. (1999), who developed marginal proportional hazards models
for data with the same structure. We also discuss an extension of McKeague & Sasieni’s
(1994) partly parametric model to this problem. We apply our methods to data from the
Framingham Heart Study. Our analysis concerns two types of event, coronary heart
disease and cerebrovascular accident, and allows for clustering of events among siblings.

2. THE ADDITIVE HAZARDS MODEL AND INFERENCE PROCEDURES

Let T, (I=1,...,L; k=1,...,K; i=1,...,n) be the failure time for failure type k
of subject | in cluster i, and let Z,,(t) be the p x 1 bounded and possibly external
time-dependent covariate vector. Correspondingly, let C;;, be the censoring time, and let
X, = min (T, C;,) be the observed time. The censoring indicator is Ay, = I(T;; < Ci),
where I(.) is the indicator function. For technical reasons, we let each cluster potentially
have the same number of subjects, that is L and K are fixed, while we allow the cluster
sizes to change by setting C;,=0 whenever T, is missing. For some constant =,
{T;, C;, Z,(t); t € [0, 7]} are assumed to be independent and identically distributed for
i=1,....,n,where T, = {(T;11, ..., Ti1p)s - - - s (Tig1s - - ., Tigr)}, and C; and Z,(t) are defined
similarly. Assume that T; and C; are conditionally independent given Z;(t).

Let A4(t; Z;,;) denote the marginal hazard for the failure time for failure type k of
subject [ in cluster i. We propose the following additive hazards model,

Lira(t; Zigg) = Aor(8) + Pox Zisa(2), (2-1)

where the prime denotes transpose, 4y, (t) is the unknown and unspecified baseline hazard
function for failure type k, and f is the p x 1 regression coefficient vector. The baseline
cumulative hazard function for failure type k is Ay (t) = j:) Aox()du. When the cluster size
is one, that is L =1, model (2-1) reduces to a distinct baseline hazards model,

i t; Zi) = 2o (1) + Bo Z (1),
and when there is only one event type, that is K = 1, to a common baseline hazards model,

2i(t; Zyg) = Ao(1) + BoZu(2).
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The counting process is denoted by N, (1) =I1(X;, <t, Ay, =1), the at-risk process by
Yu(t) =I1(Xy; =t) and the marginal filtration by

Fia(t) = 0{(Nya(), Yo (u+), Ziy(u+)), 0 <u<t}.
By the Doob—Meyer decomposition (Fleming & Harrington, 1991, pp. 31-42),

t
Nia(8) = My (1) + f Yo (W) Aipa (U5 Z ) du, (22)
0
where M, (t) is a local square-integrable martingale with respect to %, (t). As a result of
the underlying correlation, M;,,(¢) is not a martingale with respect to the joint filtration
generated by all the failure, censoring and covariate information up to time t.

It follows from (2-2) that dM (1) = dNyq(t) — Yia(0)dAoi(t) — Yiu () Box Zia(t)de. Let ﬁk
denote the estimator of the true regression parameter f,,. Under the working independence
assumption, the baseline cumulative hazard function for the kth failure type can be
estimated by

~ A t) 1 {dNya(u) — Y (u ﬁk i (w)du}
Aok(; Bi) = f n .

L
0 i—1 211 Yia(u)

Observe that >.7_, ,L=1 j; Z i (t)dM 4,(t) is the sum of martingale integrals and therefore
has mean zero. A natural estimating function for f, is

If we substitute (2-3) into the above estimating function, then, after some algebra, we have

(2:3)

”M“

f Ziga (AN (1) — Y (1) B’ Z (1) dt — Yikl(t)d]\Ok([; B)}.

0

= i Z J {Zia(t) = Zi (1)} {d Ny (1) — Y () ' Z iy (1)dt}, (2:4)

where

n L
_ Y Y0 Za(t
Zk(t)Z t—ln =1 kl() kl()

2
i=1221=1 Yi(2)

Setting U, () =0 and solving for f5, we obtain

ﬁk=|:z Z Yo (O1Z (1) — Z_k(t)}®2dt:|_ [i > {Zikl(t)_Z_k(t)}dNik’(t):|’

i=11=1 i=11=1

where a®? = aa'. Define A, =n"'L!_ Y12, [T Yau(){Z (1) — Z,(1)} ®2dt. Then the matrix
A, converges in probability to a nonsingular deterministic matrix denoted by .o7,. Assume

that n='Y0_, Y1, Yy (t) uniformly converges to m(t), and n=*X7_ Y F | Yy () Zu(t)
uniformly converges to Z,(t) for t € [0, t]. Simple algebraic manipulation yields

Ui(Box) = Z Z {szl(t — Zi(0)}dM (1)

i=11=1
It is shown in Appendix 1 that n™ 2 U( ﬂOk) is asymptotically equivalent to

n-* Z iw(Bok)s
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where

L T ~
%ik(ﬁok Z f { 1kl ikig} szkz() (2'5)

Therefore, n~*U,(By) is essentially a sum of independent and identically distributed
random variables, which entails that n™*{U,(Bo,), . - ., Ux(Box)}" asymptotically follows
a (p x K)-variate normal distribution, by the multivariate central limit theorem. The
asymptotic properties of the regression coefficient estimates are given in the following
theorem.

THEOREM 1. Under the regularity conditions given in Appendix 1, as n — oo,
n* {(B1 = Bor)s - - » (Bx — Pox)}’

converges in distribution to a zero-mean (p x K)-dimensional normal random vector. For
k=1,...,K, the variance-covariance matrix between n= (ﬂj Bo;) and n* (ﬁk Pox) is

D ji(Boj» ﬂOk) A EAU i Bos) U i Bor)} i

A consistent estimator of the covariance matrix is given by
ﬁjk(ﬂja ﬁk) = { Z ﬁ; @?{ ﬁk)} Ak >

where %y (Bi) = X1 [5 {Z (1) — Z(£)}dMyy(t) and

t t

Yiu(u )5k i (U )du—j Yikl(“)df\ozc(U; ﬁk)

0

My () = Ny (1) — f
0
Based on model (2-1), for a specific subject with the covariate vector zy(t), the cumula-
tive hazard function can be estimated by A& (t; ﬂk, 2o) = Agi(t; ﬁk) + jo ﬁkzo(u)du and the
survival function by S.(t; z) =exp { — Ak(t P, 2o)}. For ease of exposition, we suppress
the argument ﬁk in the sequel unless it is necessary to state it explicitly. The baseline
cumulative hazard estimator in (2-3) might not be nondecreasing in t. To ensure mono-
tonicity, we make a minor modification, which still preserves the asymptotic properties,
that is A1) = max,<,A(s) and S¥(t; zo) = min,<,S,(s; zo), for k=1,..., K. Following
similar arguments to those in Lin & Ying (1994), we can show that /A\Z)“k(t) and Ay, (t) are
asymptotically equivalent in the sense that /A\Z)"k(t)—/A\Ok(t)zop(n_%). A similar modifi-
cation is applied to the upper and lower simultaneous confidence bands constructed in
the next section.

3. CONFIDENCE BANDS FOR SURVIVAL CURVES

We now consider prediction of the survival curve for a specific pattern of covariates.
We define the baseline stochastic processes jointly across all K failure types as

W,(1) = n2[{Ao1 (£) — Aot ()}, - -+, {Aok (1) — Aok (1)}]"

Let 2[0, t]* be a metric space consisting of right-continuous functions {f; (1), ..., fx(t)}’
with left-side limits, where f,(¢):[0,7] > % for k=1,..., K. The metric is defined as

d(f, g = max, o o{1fi(t) — (). L <k < K} for f, g € Z[0, 7]*.
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THEOREM 2. As n — oo, W,(t) converges weakly to a zero-mean Gaussian random field

W (t) in 2[0,1]%, where W (t)={Wi(1),..., W(t )}/ The covariance function between
Wi(s) and Wi(t) is (s, t) = E{W;(5) Wi (t } for], .., K, where
dM,
Tik(t):L ﬂkg() )_(gk (1) ! Z J { it ( k((l;))} dM (1) (31)

and €,(t) = [ {Z(u)/m,(u) }du.

The dot notation means summation over the corresponding subindex; for example,
M, (1) = ,L=1 Mu(t) and Y, (1)= X}, 1L=1 Y;.(t). A consistent estimator of the
covariance matrix is ¢ asn=n"120_, {‘i’ij(s)q’ik( 1)}, where W, (1) is defined by replacing
nk(t) Z ()7, (1), %k(t) o/, and M,,(t) with their corresponding empirical estimators

Y, (t)/n, Z,(t), Ci(2) jo Z,(w)du, A, and M,,(t) in (3-1).

The proof of Theorem 2 is based on verifying the finite-dimensional distribution con-
vergence and the tightness condition (Billingsley, 1999) as outlined in Appendix 2. For
a given covariate vector z,(t), the subject-specific stochastic processes are defined as

W(t; z9) = né[{[\(t; z0) — Ai(6 20)}5 - - s {AK(IS zo) — Ak(1; o)} ]

THEOREM 3. As n — o0, W,(t; z,) converges weakly to a zero-mean Gaussian random field
W (t; zo) in Z[0, T]%, where W (t; zo) = {W1(L; zo), . . ., Wx(t; zo)}'. The covariance function
between Wi(s; zo) and Wi (t; zo) is Culs, t; z0) = E{W1(s; o) Wii(8; 20)}, for jik=1,..., K
where

"dMy (u
W (1 ZO):J nk(u() )+gk () ! Z f { (1) — ((?)} dM (1), (32)

and 9G,(t; zy) jo {zo(u) — 2, (u)/m, (u) }du.

The proof is omitted as it is similar to that of Theorem 2. The covariance function
can be consistently estimated by its empirical counterpart

A

éjk(s: t;z0)=n" {ql i(s; Zo)q’ik(t; Zo)}s

M:

i=1

where W, (1; z,) is defined by replacing (1), Z(0)/m (1), G, (t; z), o) and M, (t) with

(0)/n, Z, (1), Gi(t; zo) = [}, {zo(u) — Zi(u)}du, A, and My,(t) in (3-2). By the functional
delta method, the joint survival processes for all K failure types,

nE 48,65 20) — S1(; 20)}, - - - 1Sk (£ 20) — Sk (£ 2o)H's

converge weakly to a zero-mean Gaussian random field in [0, 7]%. A consistent estimator
of the covariance function is given by S; (S5 20)S,(: zo)ijk(s t; zg).

The pointwise confidence interval for the survival function at each fixed time point ¢ can
be constructed using the asymptotic properties of S,(t; z,). Construction of simultaneous
confidence bands for all t involves the distribution of functionals of the limiting distribution
of W,(t; z,), which does not have an independent increment structure. We use a simulation
technique of Spiekerman & Lin (1998) to approximate the distribution of W, (t; z,). Define
VZ(IQ ZO) = {I/T/i(lf, ZO): R I/T/I'((ta ZO)},s Where W((I, ZO) = ni% : \Plk(t ZO)QH and the Ql
are generated independently from the standard normal distrlbutlon N(0, 1). Conditional
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on the observed data, the only random variable in W (t; z,) is Q; such that W(t; z,) is the
sum of the independent normal random variables. The conditional covariance function of
Wis; zo) and W (t; zo) is n= 1 20—, {P;(s; 20)Pu(t; 20)}. Therefore, given the data, W,(t; zo)
has the same limiting distribution as W,(t; z,). We generate a large number of random
samples of (Q4,...,Q,) from N(0, 1), while fixing the data at their observed values. The
next theorem justifies the resampling method.

THEOREM 4. Conditional on the observed data
(N (1), Yiu(1), Zig(t)); t € [0, 7]5i=1, ..., mk=1,...,K;I=1,..., L},

W.(t; zo) converges weakly to the same zero-mean Gaussian random field W (t; zo) as W,(t; zo)
in 210, 11X

The proof is outlined in Appendix 3. To construct the confidence band for S,(; z,), we
start by defining a class of transformed processes for failure type k, namely

B(t; zo) = n* g(t; 2o) [P LAt 20)} — DAL 20)} ],

where g(.) is a known weight function which converges uniformly to a nonnegative
bounded function on [t,, t,] (0 <t; <t,< 1), and ¢(.) is a known transformation function
with a nonzero and continuous derivative ¢'(.), such as ¢(.)=log(.) or ¢(.)=log { —log(.)}.
The logarithmic transformation can restrict the confidence band to the range [0, 1],
and can improve the coverage probabilities in small samples (Kalbfleisch & Prentice,
2002). The functional delta method yields that B(t; zo) is asymptotically equivalent to
8(1; 20) {85 20) I (E; Zo).
The (1 — «) confidence band for ¢{A.(t; zy)} is then given by

PLAE 20)} F g, /2(8; 20), (33)

where q, is defined by pr{sup; i, <x,,<iy|B(Xus: 20)| > q,} = o The critical constant g,
can be obtained by choosing the (1 —«)th quantile from the large number of copies
of {SUp; i, <x,, <1 B(Xis 2o)[}. Appropriately chosen weight functions may narrow the
width of the confidence band at the time range of interest. Let 62(t; zo) be the variance
function estimator at time t of the process W(t; zo), that is 62(t; zo) = Eu(t, t; Z9) for
k=1,..., K. The equal-precision band (Nair, 1984) defines the weight function to be
g(t; zo) = A(1; 20)/6,(t; zo), while the Hall-Wellner band (Hall & Wellner, 1980) requires
that g(t; zo) = Au(t: z0)/{1 + 62(t; zo)}. The valid range of confidence bands is usually
restricted to the first and last uncensored observations. The range might be further
restricted to [y, t, ] (Nair, 1984; Chen & Ying, 1996), because of the unstable estimation in
the tails. For b=1 and b=2, t, can be obtained by solving ¢, =62(t,; zo)/{ 1+ 62(ty: 20)},
where (cy, ¢,) may be prespecified to be (0-1, 0-9).

4. PARTLY PARAMETRIC ADDITIVE HAZARDS MODELS

We extend the methods to the partly parametric additive hazards model, which
McKeague & Sasieni (1994) studied for independent failure time data. When the effect of
some covariates, for example R;,;, may vary over time, a ¢ X 1 vector of time-varying
coeflicients o, (¢) is introduced in the model, so that

Zia(t; Riggs Zigg) = otor (1) Rygg + BorZ - (41)
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For the kth failure type, the loglikelihood function based on (4-1) is given by

T

L(B, ) = Z 2 |: ikt 108 {0(X i) Rigg + B'Z s } —J Yikl(t){‘x(t),Rikl_f'ﬁlzikl}dtj|-

0

The derivative with respect to f5 is

ol (B, o) _ i i { AZig B Jt Yikl(t)ZiklZz{klﬁdt_ ft Yikl(t)ZiklRl{klO‘(t)dt}
op ; Zia(X i) 0 Aaa(t) 0 Aia(t) .

Let Z,={Z;1 Vi1 (1), . . ., Zyr Yor (1)}, let R, be defined similarly, let

}\,k_l(t) = dlag {1/}"ikl(t)3 l = 1, ey I’l, l= 1, ceey L}

be an (nL x nL) diagonal matrix, and let N, (t) = {N(t),..., Nu(t)}’ be an (nL)-
dimensional counting process vector. If we define Qk(t):ﬂ)ozk(u)du and set 0l (p,a)/0p=0,
we have

T -1 T T
By = U Z,’(}vkl(t)det} {f Z,;)Lkl(t)de(t)—J ZiJq M )IdeQk(t)}-
0 0 0

For a(t), consider the submodel a(t) = by(t) + nb(t), where 5 is a scalar and b(t) is a given
(¢ x 1) vector of functions. The derivative with respect to # is

ol (B, n) _ Z": i {Alklb( ikt) Rk B jr Yikl(t)b(t),Rikle{klO‘(t)dt
on i=11=1 L (X i) 0 Zia(1)
B Jr Yikl(t)b(t),RiklZz{klﬁdt}
0 i (1) '

Since this submodel is a special case of model (4:1), an estimator for (4-1) should work
on all submodels. If we solve 0l,.(f, 17)/0n = 0 for all vector-valued functions b(t), we obtain

Qk(t):f (R @R ™ R A )dNy (1) — Rid ()2, frdu.

0

By plugging Q,(t) into the expression for 5, we finally have

By = { f t z,;Hkmzkdt}_l J ZLH(1)AN,(0), (42)

where Hy(t) = Ay 1(t) — A YR {R A H(0)R,} ~ R} A, (). As shown in (4-2), B, resembles
a weighted least squares estimator, but f3, still depends on the unknown A, '(t). When we
replace A, '(t) by the identity matrix I, so that H, (1) = I — R,(R;R,) 'R}, B, reduces to
the ordinary least squares estimator. The estimation algorithm proceeds as follows: first
use I instead of /, !(t) to obtain the initial values for B, and Q,(t), denoted by f* and
QO(1); next, based on Q(¢), estimate «,(t) nonparametrically using the kernel smoothing
method (Bowman & Azzalini, 1997); then obtain the estimator ik’ 1(t) based on (4-1); and
finally substitute 4, !() by 4; '(f) to obtain the final estimators f, and Q,(¢).
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Noting that H,(t) is orthogonal to R,, and using (4-1) and the decomposition

t

M (1) = Ny (1) — J Yo (W) Aia (s Ry, Ziyg)du,

(0]

we have

T T

Z; H (1)dN (1) — {f Ziﬁk(t)det} Bo

0

f Z, B (1)dM,(1) = J

0 0

and thus

T -1 T
n%(Bk_ﬁOk)z {n_lj Zl,cﬁk(t)zkdt} ”_ijv Z, H,(t)dM,(1),

0 0

where M (1) = {M4(?), ..., M,(t)}". By arguments similar to those in Appendix 1, the
asymptotic normality of n*(f, ..., fx) can be proved. Furthermore, by noting that

O (1) — Qoi(1)} = f (R ()™ Ry} T R Ay (1) ™ M (w)
0

— H {R,;Mu)-lﬂ%k}*Rkikw)-lz,;du] * (i — Bor)s

we can show that n* {Q, (1) — Qu(t)} converges weakly to a zero-mean Gaussian random
field based on arguments similar to those in Appendix 2.

The estimation procedures for (2-1) and (4-1) are very different. The former mimics
the partial likelihood score function, and the latter involves the nonparametric hazard
estimation. A larger sample size would be required to estimate the hazard function reliably
in a nonparametric manner.

5. SIMULATION STUDIES

To investigate the properties of our proposed method with practical sample sizes, we
conducted extensive simulation studies. For the first part of the simulations, we chose
marginal exponential distributions for the two distinct failure types, K = 2, and a constant
cluster size of two, L =2, within each failure type. We generated the failure times for the
ith cluster, T;;{, Ti12, Tz and T, (i=1,...,n), from the multivariate Clayton—-Oakes
model (Clayton & Cuzick, 1985; Oakes, 1989). The joint survival function was given by

pPr(Tiy > tig1s Tio > tigas Tioy > tings Tiop > 1ol Zinis Zinas Zings Zina)
|: 22 {(}~Ok+ﬁlzikl)tikl} :|_0
=| > Yexpy—i ¢ —=3| ,
K=11=1 0

where 0 >0, and smaller 0 induced larger correlation. The parameter 6 was preset to
be 39, 12 or 0-31, which corresponded to the within cluster correlation of the failure times
of p=02, 0-5 or 0-8 for the first failure type, and p =023, 0-56 or 0-87 for the second
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failure type, respectively. Different baseline hazards were assumed for the two failure types,
namely 4o, =2 and 4y, = 4. Two covariates were included in the model: one was a binary
variable, Z, taking the value of O or 1 with probability 0-5, and the other was a continuous
variable, Z,, generated independently from Un (0, 5). The true regression coefficients were
preset at ff, = 1, categorical, and f, = 0-5, continuous. The censoring times were generated
independently from Un (0, a), with a = 1-1, 0-43, 0-16 to achieve approximately 25%, 50%
and 75% censoring rates for k=1, and 16%, 37% and 65% for k = 2. For each simulation
configuration, 500 replicated samples were generated, and the number of clusters, n, was
100 and 150. We evaluated the small sample size properties of ﬁ and the coverage properties
of the robust equal-precision, EPg, and Hall-Wellner, Hwy, 95% confidence bands. The
robust bands were constructed with adjustment for the intraclass correlation, while the
naive method did not take the correlation into account. To illustrate the empirical coverage
rates of the simultaneous confidence bands, we set z,=(1,0)" to estimate the survival
curve and its bands. We independently generated 1000 simple random samples (Q4, ..., Q,)
from N(O, 1) for obtaining the critical constant ¢, in (3:3).

For each of the data realisations, we obtained the pointwise estimates of the regression
coefficients and the sandwich-type variance estimators. We calculated the sample standard
deviations, sD, the average of the estimated standard errors, SE, and the 95% nominal
level coverage rates, CR. As shown in Table 1, both of the point estimators Bl and ﬁz are
approximately unbiased and approach the true values as the sample size increases.
Comparing the columns ‘sD” and ‘SE’ suggests that the variance estimators provide good
estimation of the variability of the regression coefficient estimators. The 95% confidence
interval coverage rates are close to the nominal level, which ensures the adequacy of
the asymptotic approximations for practical use. The variation of B becomes smaller
with an increased sample size and becomes larger with an increased censoring rate. We
also examined the scenarios with n =25 and 50, where similar conclusions were drawn.
The equal-precision and Hall-Wellner 95% confidence bands were constructed, and the
corresponding simultaneous coverage rates, EPy and HWg, were calculated. The empirical
coverage rates of the confidence bands were satisfactory and close to 95%. The results
provide empirical evidence that the approximation method by resampling many Q,’s from
N(0, 1) works well.

We carried out another set of simulations with a single failure type and the cluster
size of four, that is K =1 and L=4. The baseline hazard function was chosen to be
from a Weibull distribution, for example Ay(t) =yt. The failure times of the ith cluster
(T;;, T5, T3, T,,) were generated from the Clayton—Oakes model with

pr(Ty > tyy, Ty > by, Ty > b3, Tig > 14|24y, Zip, Zi3, Z14)

4 2 ’ —0
vth B Zaty
= -3
{l;1 eXp<20 - 0 > } ’

where we chose y=1. The correlation parameter 6 was preset at 3:6, 1 or 0-24 for
the within-cluster correlation of p=0-2, 0-5 or 0-8, respectively. Two covariates were
generated independently, of which Z, is a categorical variate taking the value of 0 or 1
with probability 0-5, and Z, ~ Un (0, 2). The true regression coefficients were prespecified
as ; =02 and 3, = 0-7. The censoring times were generated independently from Un (0, a)
with a prespecified to be 3, 1'4 or 0-62 to achieve approximately 25%, 50% or 75%

€T0Z ‘2 Joquieldes uo Buo BuoH Jo A1sieAIUN e /610°Seuinofploxo ewoid//:dny wolj papeojumoq


http://biomet.oxfordjournals.org/

810 GUOSHENG YIN AND JIANWEN CAIl

Table 1: First simulation study. Estimates and confidence bands for cluster size of 2
with ;=1 and f, =05

n o c% I SD SE CR b, SD SE CR EPp  HWpg

Failure Type 1
100 02 25 1-024  0-613 0-606 94-6 0-502 0212 0-208 954 96:0 946
50 0986 0721 0744 962 0496 0260 0258 958 922 900
75 1-:031  1-090 1-:066 954 0-480 0373 0370 956 942 930

05 25 1:031 0621 0607 936 0-501 0215 0208 942 954 940
50 0991 0-730 0746 948 0-497 0260 0258 946 94-8 926
75 1-019 1-085 1-065 958 0-474 0383 0-369 942 92:8 916

08 25 1-028 0-611 0-606 942 0-506 0220 0-208 93-6 97-0 942
50 0977 0737 0747 964 0-502 0263 0260 964 944 92-8
75 0990 1-:049 1-:061 946 0482 0382 0370 936 93-8 924

150 02 25 1-041 0529 0496 928 0-508 0-189 0-172 924 970 952
50 1-:064 0643 0614 936 0-511 0227 0213 940 936 914
75 1-037 0885 0874 950 0-518 0298 0304 952 96:6 940

05 25 1:050 0514 0499 940 0-514 0193 0174 926 96:0 950
50 1-074 0625 0-616 952 0-514 0229 0214 934 948  93-8
75 1:049 0884 0878 952 0-521 0295 0-304 956 952 930

08 25 1-057 0509 0-502 954 0-521  0-191 0176 920 96:0 952
50 1-:078 0-618 0619 954 0-519 0233 0216 942 942 944
75 1-075 0866 0879 948 0-540 0296 0306 95-8 96:0 946

Failure Type 2

100 023 16 1-011 0911 0888 944 0-512 0333 0308 918 954 942
37 1-002 1086 1028 944 0-505 0377 0357 934 942 940

65 1:029 1417 1382 960 0-541 0500 0482 934 940 924

056 16 0979 0909 0883 938 0-505 0336 0305 922 946 930

37 1:008 1052 1027 950 0-500 0376 0356 934 940 928

65 1-014 1453 1381 956 0-519 0503 0481 954 952 950

0-87 16 0982 0871 0873 954 0496 0324 0303 930 97-0 946

37 0986 1044 1021 938 0-486 0356 0354 952 962 946

65 1:002 1503 1-381 942 0482 0499 0483 954 932 930

150 023 16 1-008 0760 0730 932 0-508 0-267 0253 950 93-8 916
37 0962 0-878 0-846 944 0-508 0-312 0293 924 946 920
65 0916 1-178 1134 944 0-498 0408 0393 938 94-4 910

0-56 16 1-005 0739 0731 938 0-505 0272 0253 916 952 928
37 0-977 0-866 0-847 93-8 0-503 0-308 0294 924 942 91-6
65 0925 1192 1139 934 0-504 0414 0-396 950 93-8 930

0-87 16 1-015 0723 0727 962 0-501 0266 0252 920 970 934
37 0967 0-839 0-847 952 0-496 0296 0294 93-6 96:6 940
65 0946 1-137 1143 952 0-500 0434 0398 926 94-4 926

sD, standard deviation; SE, average of estimated standard errors; CR, 95% coverage rate; EPg and HWg,
simultaneous coverage rates of equal-precision and Hall-Wellner bands, respectively.

censoring rates. The number of clusters was n =50 and 100, and 500 simulations were
performed for each scenario. We estimated the survival curve for z,=(1,0-5)" and con-
structed the corresponding 95% simultaneous confidence bands. We also constructed the
naive bands, EPy and HWy, by ignoring the underlying failure time correlation. Observing
E{M;,(t)} =0 and var {M;,(t)} = E{Ny,(t)}, in the naive method we replace M, (t) by
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N (1)Qyy in (3-2), where the Q;;’s were generated independently from N(O, 1) (Lin et al.,
1993; 1994). The results are summarised in Table 2, which shows the appropriateness of
the asymptotic approximation for the regression parameters and the simulation methods
for the construction of the confidence bands with finite sample sizes. A comparison between
the robust and naive bands indicates that the naive method performs poorly, especially
when the underlying failure time correlation is high.

Table 2: Second simulation study. Estimates and confidence bands for cluster size of 4 with
181 == 0'2 al’ld ﬁz == 0'7

o c% I SD SE CR fa SD SE CR EPg  HWgR EPy HWy

n=>50
02 0 0202 0189 0-178 930 0711 0180 0-167 926 948 930 944 938
25 0-207 0209 0-197 922 0724 0192 0181 930 94-8 938 946 936
50 0205 0220 0219 956 0698 0198 0200 94-8 912 910 930 926
75 0225 0292 0271 936 0-728 0249 0244 938 954 920 922 920

0-5 0 0202 0-184 0174 93-6 0724 0193 0172 914 958 938 934 916
25 0212 0212 0198 934 0730 0199 0187 928 944 928 930 922
50 0219 0236 0219 928 0724 0224 0206 934 924 900 910 900
75 0221 0295 0272 926 0-723 0261 0250 930 956 904 924 906

0-8 0 0209 0182 0171 926 0747 0204 0178 916 946  91-4 858 840
25 0214 0206 0196 930 0729 0206 0193 932 932 924 880 866
50 0213 0234 0219 934 0718 0220 0215 952 922 908 874 862
75 0216 0282 0271 932 0722 0269 0262 946 958 930 892 872
n=100
0-2 0 0205 0129 0129 948 0700 0124 0121 944 958 934 952 932
25 0-197 0-138 0-141 952 0-703 0139 0130 932 966 944 964 932
50 0203 0159 0156 954 0710 0149 0142 936 926 906 932 930
75 0206 0200 0194 934 0707 0185 0172 936 96:0 918 942 918

0-5 0 0208 0130 0128 950 0710 0132 0126 916 952 922 924 912
25 0200 0-140 0141 954 0710 0146 0135 932 976 946 936 894
50 0201 0159 0156 946 0712 0153 0146 946 956 922 926 918
75 0206 0201 0194 940 0702 0183 0177 940 96:0 928 924 920

0-8 0 0216 0131 0128 93-8 0722 0138 0130 930 962 934 866 818
25 0205 0139 0140 946 0715 0146 0139 940 962 940 880 836
50 0200 0-153 0156 960 0-707 0155 0152 942 96:6 944 890 866
75 0208 0194 0194 954 0-707 0186 0185 944 970 946 908 884

sD, standard deviation; SE, average of estimated standard errors; CR, 95% coverage rate; EPy and HWy are
the simultaneous coverage rates of equal-precision and Hall-Wellner bands, and Epy and HwWy are the naive
ones, respectively.

6. FRAMINGHAM HEART STUDY

We applied our inference procedures to data from the Framingham Heart Study. The
objective of the study was to identify the risk factors or characteristics that contribute to
cardiovascular disease by following a large number of disease-free participants, those with
no overt symptom and who had not suffered a heart attack or stroke, over a long period
of time. The study was initiated in 1948 and the subjects were examined every two years.
Multiple failure outcomes were recorded from the same subject, e.g. coronary heart disease
and cerebrovascular accident.

€T0Z ‘2 Joquieldes uo Buo BuoH Jo A1sieAIUN e /610°Seuinolploxo ewoid//:dny wolj papeojumoq


http://biomet.oxfordjournals.org/

812 GUOSHENG YIN AND JIANWEN CAIl

We considered the first manifestations of coronary heart disease and cerebrovascular
accident as two different events, that is K =2. The times to event were recorded in
years. In this analysis, we had 1571 individuals, of whom 233 experienced coronary
heart disease but not cerebrovascular accident, 34 experienced cerebrovascular accident
but not coronary heart disease, and 17 experienced both. There were 113 sibling clusters
of size 2, 24 of size 3 and 3 of size 4. For comparison, we also fitted the Cox-type marginal
regression model. The analyses based on the additive and multiplicative hazards models
are summarised in Table 3. The absolute values of the parameter estimates from the
additive hazards model are much smaller than those from the Cox model, which is often
the case. The estimates from the additive hazards and Cox models have the same signs,
indicating the same directions of the covariate effects, while the p-values for the two
models differ.

Table 3. Analysis of data from the Framingham Heart Study under the additive
and multiplicative hazards models

Additive hazards model

Coronary heart disease Cerebrovascular accident
Covariate Bx1073 sex107® p-value Bx1073 sex107® p-value
Smoke (yes =1, no =0) 2:4562 1-4038 0-080 09713 0-6215 0-118
Sex (female = 1, male=0) —5-1987 1-4343 <0-001 —0-3027 0-6206 0-626
Body mass index 0-2499 0-0776 0-001 0-0871 0-0428 0-042
Cholesterol 0-0363 0-0060 <0-001 0-0037 0-0030 0-218
Systolic blood pressure 0-1023 0-0321 0-001 0-0204 0-0119 0-086
Diastolic blood pressure 0-0800 0-0455 0-079 0-0378 0-0174 0-029
Waiting time (years) 0-0127 0-0614 0-836 0-0337 0-0199 0-091

Multiplicative hazards model

Coronary heart disease Cerebrovascular accident
Covariate ff SE p-value ﬁ SE p-value
Smoke (yes =1, no =0) 0-3157 0-1414 0-026 0-6412 0-3204 0-045
Sex (female =1, male=0) —0-6203 0-1335 <0-001 —0-1979 0-2822 0-480
Body mass index 0-0308 0-0179 0-085 0-0486 0-0359 0-180
Cholesterol 0-0042 0-0016 0-007 0-0021 0-0033 0-530
Systolic blood pressure 0-0120 0-0072 0-096 00114 0-0154 0-460
Diastolic blood pressure 0-0095 0-0122 0-440 0-0246 0-0249 0-320
Waiting time (years) 0-0010 0-0200 0-960 0-0248 0-0458 0-590

SE, standard error.

To illustrate the prediction of the survival probability for a given subject, Fig. 1 shows
the estimated survival curves for a male smoker with body mass index of 35 kg/m?,
cholesterol level of 360 mg/dl, systolic blood pressure of 160 mm Hg, diastolic blood
pressure of 90 mm Hg and waiting time of 10 years. The pointwise confidence intervals
from the additive hazards model are much narrower than those from the Cox model. The
equal-precision and Hall-Wellner 95% confidence bands are constructed for the same
subject with 10000 copies of Q; random samples based on the simulation method. Figure 2
presents the 95% simultaneous confidence bands with the estimated survival curves of
coronary heart disease and cerebrovascular accident. The equal-precision band is narrower
in the two tails and the Hall-Wellner band is narrower in the middle of the range.
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Fig. 1: Framingham Heart Study. Survival curves under the additive

hazards (bold solid curve) and Cox (thin solid curve) models, for

(a) coronary heart disease and (b) cerebrovascular accident of a

subject with covariates smoke = 1, sex = male, body mass index = 35,

cholesterol = 360, systolic blood pressure =160, diastolic blood

pressure =90, waiting time =10, and the corresponding 95%
pointwise confidence intervals (dotted curves).

7. REMARKS

Unlike maximisation of the partial likelihood function in the Cox model, solution of
the estimating equation (2-4) does not require any iterative numerical procedure: the
parameter estimates have a closed form. In principal, efficiency could be gained by
incorporating an appropriate weight into (2-4). However, as pointed out by Lin & Ying
(1994) for the case of independent data, the efficiency loss is usually very small.

As demonstrated in the simulation study, ignoring the correlation would result in under-
coverage of the true survival curve, which becomes severe when there is high correlation.
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An alternative to our proposed resampling method could be the bootstrap method using
the clusters as the sampling units to preserve the intracluster correlation.
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reading of the manuscript and constructive comments which led to great improvement of
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Fig. 2: Framingham Heart Study. Equal-precision (dotted curves)
and Hall-Wellner (solid curves) 95% confidence bands for the
survival curves for (a) coronary heart disease and (b) cerebrovascular
accident, under the additive hazards model. The middle, bold solid
curve is the point estimate of the survival curve for the subject with

zo=(1, 0, 35, 360, 160, 90, 10)".
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APPENDIX 1
Large-sample distribution of(ﬁ’l, e B}()/

Forl=1,...,L,k=1,...,K,i=1,...,n and some constant t > 0, we assume the following set
of regularity conditions throughout this paper: pr{Y;,(t)=1,t€[0, 7]} >0; jf) Aox(t)dt < oo for
each k; the covariate vector Z;,(t) is bounded for t € [0, 7]; and .7, is positive definite.

By the functional central limit theorem (Pollard, 1990, Theorem 10.6), it can be shown that

n- 12y 1 M;,(t) converges in distribution to a zero-mean Gaussian process with continuous
sample paths The strong representation theorem (Pollard, 1990, Theorem 9.4) and Lemma A.3 of
Bilias et al. (1997) entail that

(0 |
: Z Z J‘ {Zk(t nk(t)} dM (1) -0, (A1-1)

i=11=1

in probability, as n — oo. For failure type k, we have

n“Z(ﬁk—ﬂOk>=n*”2A,:1§ P [ J Zaa(0) = Zu(0)}dNu (1)

i

_f Y (O Z (1) — Z_k(t)}®2ﬁ0kdt:|

(]

_n—1/2Ak—1
i

J‘ {Zia(1) = Z, (1) dM o (1).

I =
I M =

11

Under the regularity conditions, if we apply (A1-1), the above quantity can be shown to be
asymptotically equivalent to n 1/ZAk ' U (Bor), where %y (Boy) is defined as in (2-5). Note
that A, converges in probability to .o7,, and Jlllk( Pox) i=1,...,n) are independent and identically
distributed random vectors. By the multivariate central limit theorem and Slutsky’s theorem,
Theorem 1 follows.

APPENDIX 2

Weak convergence properties of W,(t)
With similar arguments to those in Appendix 1, we can show that, as n — oo,

n t 1 1
— i; L {n‘lY,k,(u)_ }dMik_(u)—>0, (A21)

T (u)

in probability. For failure type k, if we plug in (2-3), the baseline cumulative hazard process can
be written as

Woil£) = "2 {Rou(8: Bi) = Roi(t; or)} + n”{&k(r Bor) — Aok (1)}
1/2Jt i-1 1 1 Yo (u)( ﬁOk ,Bk) it (U

n

i=1 1 1 Yia(u)

T f’ Lioy 1L=1 {dNya(u) = Yoq () Bor Zia (u)du — Y (u) Aoy (u)du}
i=1 IL:1 Yira(u)

e | [T dM () P =

=n"' Y U - G Y J {Z,-k,(r)—Zk(t)}dM,-km}.
=1l Jo n Y (u) 1=1 Jo

Coupling with (A1-1), it can be shown that W, (¢) is asymptotically equivalent to n™"2Y.7_, W, (1),

where {W(?),..., ¥, (t)} given in (3-1), are independent and identically distributed random

variables, for each fixed t. Hence, for any finite number of time points (t,,...,t,), it can be
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shown that the joint distribution of {W,(t,),..., W,(t,)}  is asymptotically normal with mean
zero; that is the finite-dimensional distributional convergence follows from the multivariate central
limit theorem. Next, we prove the tightness condition of W,,(¢) in order to ensure the weak con-
vergence property of the processes. Since the space of Z[0,t]¥ is equipped with the uniform
metric, the tightness of W,(t) follows from the tightness of W/(t)=n'? fodM ; (w)/Y, (u) and
W2 (1) =n'2 (B, — Por) Ci(2). It follows from the weak convergence of n~Y?>M , (t) and (A2-1) that
W¥(t) converges weakly to a zero-mean Gaussian process. Thus, W¥(t) is tight by Theorem 10.2
of Pollard (1990), and the tightness of W'?(¢) follows from Theorem 1. Hence, W,(t) converges to
a zero-mean Gaussian random field in [0, t]X.

APPENDIX 3
Weak convergence properties of W(t; zo)

Without loss of generality, we now prove that, conditional on the data, W, (t) converges weakly
to the same zero-mean Gaussian random field % (t) as W,(t) in 2[0, t]X. The proof for the

weak convergence of W,(t 2,), follows similar arguments. Note that W,(t) = {W,, (1), ..., Wik(t)}',
where W, (t)=n""221_, Wy (0)Q;, for k=1,...,K, and the Q;s are generated independently from
N(0, 1). Define W,(t)= {W,,l( )y Wok()), where W(t)=n"12Y"_ W, (1)Q;. By the proof of

Theorem 2, n 2 {¥ ,(1),..., ¥ ( )} converges weakly to #(t) uncondrtionally. Based on the

conditional multiplier central limit theorem in van der Vaart & Wellner (1996, Theorem 2.9.6),

W, (t) converges weakly in probability to #(t) conditional on the data. It suffices to prove that

| W,,.(t) — W, (t)]| = O in probability, where | f(¢)|| = Sup, co.qf(t)| for a function f:[0, 7] - Z.
Now, we consider || W,,(t) — W,.(0)| < [IWD ()| + | We2(t)||, where

a1 - L. QidMyy(u)  Q;dMyy(u)
Wik =n"" ZH _n-lrk<5)}’

T (1)

WA () =n"1? Z 0:Ci(nA Z, J {Z (1) — Zy (1)} d M (1)

i=1

n- 12 i 0, (1) Z { ikt ( Z (I)}dMikl([)'

Some algebraic manipulation yields that,

WP ()l <

n L 1 1
n~ 12 Ql{ - = }Ai I(Xy<1)
Z Z (X)) n ! Yi (Xin) “ “

ot dA, dAOk
oy f QiYikru){ T ”)}H

n 2 Z Z f 0; Yiu( “){ ﬂ;{ - o }Zikl(u)du

i=11=1 ”71Y.k.(“) T (u) (A31)

The first term on the right-hand side of (A3-1) asymptotically converges to zero in probability by
Lemma A.3 in Spiekerman & Lin (1998) and the fact that, uniformly,

In™" Y (1) = m(0)] =0, (A32)

in probability. The second term of (A3-1) converges to zero by Lemma A.3 and Theorem 2 in
Spiekerman & Lin (1998) and (A3-2). The third term of (A3-1) converges to zero by Lemma A.3
and Theorem 2 in Spiekerman & Lin (1998), Theorem 1 and (A3-2).
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Note that |W@2(t)| is bounded above by

H{C:’c(t)Akl—(gzﬁ(t)%kl}n”2 Y Qi , (A33)
i=1

+ H(g,’c(t)@{klnl/z Y, 0i(Si. — su)
i=1

where

Si. = i JI {Zaa() = Z(O}dMy (1), 54 = i Jr {Zikl(t) - Zk(t)} dM (1)

0 =1 Jo (1)

By the uniform convergence of Cy(t) to (1), and A, to .o, and the fact that n=?X7_ Q0,8
converges to a normal distribution, the first term in (A3-3) converges to zero. The second term
in (A3-3) goes to zero because n”2X7_, 0;(8i. — si.) — 0 in probability, and thus the proof is
complete.
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