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S

Marginal additive hazards models are considered for multivariate survival data in which
individuals may experience events of several types and there may also be correlation
between individuals. Estimators are proposed for the parameters of such models and
for the baseline hazard functions. The estimators of the regression coefficients are
shown asymptotically to follow a multivariate normal distribution with a sandwich-
type covariance matrix that can be consistently estimated. The estimated baseline and
subject-specific cumulative hazard processes are shown to converge weakly to a zero-
mean Gaussian random field. The weak convergence properties for the corresponding
survival processes are established. A resampling technique is proposed for constructing
simultaneous confidence bands for the survival curve of a specific subject. The method-
ology is extended to a multivariate version of a class of partly parametric additive
hazards model. Simulation studies are conducted to assess finite sample properties, and
the method is illustrated with an application to development of coronary heart diseases
and cardiovascular accidents in the Framingham Heart Study.

Some key words: Censoring; Confidence band; Correlated survival data; Counting process; Estimating
equation; Semiparametric; Survival function.

1. I

The additive hazards model, in which covariate effects are expressed through hazard
differences rather than hazard ratios as in Cox’s (1972, 1975) proportional hazards
model, has often been suggested; see for example Breslow & Day (1980, pp. 53–9; 1987,
pp. 122–31) and Cox & Oakes (1984, pp. 73–4). O’Neill (1986) has shown that use of the
proportional hazards model can result in serious bias when the additive hazards model
is correct.
For independent survival data subject to right-censoring, semiparametric estimation of

the additive hazards model when the baseline hazard function is unspecified has been
studied by many authors. Lin & Ying (1994) derived large-sample theory paralleling the
martingale approach developed by Andersen & Gill (1982) for Cox’s model. The additive
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hazards model has been applied to interval censored data by Lin et al. (1998) and
Martinussen & Scheike (2002), to measurement error problems by Kulich & Lin (2000),
to frailty models by Lin & Ying (1997) and to cumulative incidence rates by Shen & Chen
(1999). Extensions of the additive hazards model which allow time-varying coefficients
have been proposed by several authors. Huffer & McKeague (1991) studied weighted least
squares estimation for a nonparametric additive risk model first proposed by Aalen
(1980, 1989). McKeague & Sasieni (1994) developed a partly parametric additive hazards
model that includes both time-dependent and constant regression coefficients. Klein &
Moeschberger (1997, Ch. 10) summarised this work; see also Scheike (2002).
All this work has assumed mutual independence of the survival times. Correlated or

clustered survival data are often analysed by frailty models, described for example in
Hougaard (2000), or by marginal models, reviewed by Lin (1994). Marginal models for
events of different types occurring to the same subject will usually involve different baseline
hazards for each type of event; see Wei et al. (1989). In contrast, Lee et al. (1992) discussed
marginal models for highly stratified, i.e. clustered, data with events of the same type, so
that a single baseline hazard function is appropriate. In this paper, we formulate and
analyse a marginal additive hazards model for survival data which include both clustering
of individuals and events of several types. Our work complements that of Spiekerman &
Lin (1998) and Clegg et al. (1999), who developed marginal proportional hazards models
for data with the same structure. We also discuss an extension of McKeague & Sasieni’s
(1994) partly parametric model to this problem. We apply our methods to data from the
Framingham Heart Study. Our analysis concerns two types of event, coronary heart
disease and cerebrovascular accident, and allows for clustering of events among siblings.

2. T      

Let T
ikl
( l=1, . . . , L ; k=1, . . . , K; i=1, . . . , n) be the failure time for failure type k

of subject l in cluster i, and let Z
ikl

(t) be the p×1 bounded and possibly external
time-dependent covariate vector. Correspondingly, let C

ikl
be the censoring time, and let

X
ikl
=min (T

ikl
, C
ikl
) be the observed time. The censoring indicator is D

ikl
=I(T

ikl
∏C
ikl
),

where I ( . ) is the indicator function. For technical reasons, we let each cluster potentially
have the same number of subjects, that is L and K are fixed, while we allow the cluster
sizes to change by setting C

ikl
=0 whenever T

ikl
is missing. For some constant t,

{T
i
, C
i
, Z
i
(t); tµ[0, t]} are assumed to be independent and identically distributed for

i=1, . . . , n, where T
i
={(T

i11
, . . . , T

i1L
), . . . , (T

iK1
, . . . , T

iKL
)}∞, and C

i
and Z

i
(t) are defined

similarly. Assume that T
i
and C

i
are conditionally independent given Z

i
(t).

Let l
ikl

(t; Z
ikl
) denote the marginal hazard for the failure time for failure type k of

subject l in cluster i. We propose the following additive hazards model,

l
ikl

(t; Z
ikl

)=l
0k

(t)+b∞
0k

Z
ikl

(t), (2·1)

where the prime denotes transpose, l
0k

(t) is the unknown and unspecified baseline hazard
function for failure type k, and b

0k
is the p×1 regression coefficient vector. The baseline

cumulative hazard function for failure type k is L
0k

(t)=∆t
0
l
0k

(u)du. When the cluster size
is one, that is L=1, model (2·1) reduces to a distinct baseline hazards model,

l
ik
(t; Z
ik
)=l
0k

(t)+b∞
0k

Z
ik
(t),

and when there is only one event type, that is K=1, to a common baseline hazards model,

l
il
(t; Z
il
)=l
0
(t)+b∞

0
Z
il
(t).
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The counting process is denoted by N
ikl

(t)=I(X
ikl
∏t,D

ikl
=1), the at-risk process by

Y
ikl

(t)=I(X
ikl
�t) and the marginal filtration by

F
ikl

(t)=s{(N
ikl

(u), Y
ikl

(u+), Z
ikl

(u+)), 0∏u∏t}.

By the Doob–Meyer decomposition (Fleming & Harrington, 1991, pp. 31–42),

N
ikl

(t)=M
ikl

(t)+P t
0

Y
ikl

(u)l
ikl

(u; Z
ikl

)du, (2·2)

whereM
ikl

(t) is a local square-integrable martingale with respect to F
ikl

(t). As a result of
the underlying correlation, M

ikl
(t) is not a martingale with respect to the joint filtration

generated by all the failure, censoring and covariate information up to time t.
It follows from (2·2) that dM

ikl
(t)=dN

ikl
(t)−Y

ikl
(t)dL

0k
(t)−Y

ikl
(t)b∞
0k

Z
ikl

(t)dt. Let b@
k

denote the estimator of the true regression parameter b
0k
. Under the working independence

assumption, the baseline cumulative hazard function for the kth failure type can be
estimated by

LC
0k

(t; b@
k
)=P t

0

Wn
i=1
WL
l=1

{dN
ikl

(u)−Y
ikl

(u)b@ ∞
k
Z
ikl

(u)du}

Wn
i=1
WL
l=1

Y
ikl

(u)
. (2·3)

Observe that Wn
i=1
WL
l=1
∆t
0
Z
ikl

(t)dM
ikl

(t) is the sum of martingale integrals and therefore
has mean zero. A natural estimating function for b

0k
is

U
k
(b)= ∑

n

i=1
∑
L

l=1
P t
0

Z
ikl

(t){dN
ikl

(t)−Y
ikl

(t)b∞Z
ikl

(t)dt−Y
ikl

(t)dLC
0k

(t; b)}.

If we substitute (2·3) into the above estimating function, then, after some algebra, we have

U
k
(b)= ∑

n

i=1
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}{dN
ikl

(t)−Y
ikl

(t)b∞Z
ikl

(t)dt}, (2·4)

where

Z9 k (t)=
Wn
i=1
WL
l=1

Y
ikl

(t)Z
ikl

(t)

Wn
i=1
WL
l=1

Y
ikl

(t)
.

Setting U
k
(b)=0 and solving for b, we obtain

b@
k
=C ∑n
i=1
∑
L

l=1
P t
0

Y
ikl

(t){Z
ikl

(t)−Z9 k (t)}E2dtD−1C ∑n
i=1
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dN
ikl

(t)D ,
where aE2=aa∞. Define A

k
=n−1Wn

i=1
WL
l=1
∆t
0
Y
ikl

(t){Z
ikl

(t)−Z9 k (t)}E2dt. Then the matrix
A
k
converges in probability to a nonsingular deterministic matrix denoted byA

k
. Assume

that n−1Wn
i=1
WL
l=1

Y
ikl

(t) uniformly converges to p
k
(t), and n−1Wn

i=1
WL
l=1

Y
ikl

(t)Z
ikl

(t)
uniformly converges to zAk (t) for tµ[0, t]. Simple algebraic manipulation yields

U
k
(b
0k

)= ∑
n

i=1
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dM
ikl

(t).

It is shown in Appendix 1 that n−DU
k
(b
0k
) is asymptotically equivalent to

n−D ∑
n

i=1
U
ik
(b
0k

),
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where

U
ik
(b
0k

)= ∑
L

l=1
P t
0
qZikl (t)− zAk (t)

p
k
(t)r dM

ikl
(t). (2·5)

Therefore, n−DU
k
(b
0k
) is essentially a sum of independent and identically distributed

random variables, which entails that n−D{U1 (b01 ), . . . , UK (b0K )}∞ asymptotically follows
a ( p×K)-variate normal distribution, by the multivariate central limit theorem. The
asymptotic properties of the regression coefficient estimates are given in the following
theorem.

T 1. Under the regularity conditions given in Appendix 1, as n�2,

nD{(b@ ∞
1
−b∞
01

), . . . , (b@ ∞
K
−b∞
0K

)}∞

converges in distribution to a zero-mean ( p×K)-dimensional normal random vector. For
j, k=1, . . . , K, the variance-covariance matrix between nD (b@

j
−b
0j

) and nD (b@
k
−b
0k

) is
D
jk

(b
0j

, b
0k

)=A−1
j

E{U
1j

(b
0j

)U∞
1k

(b
0k

)}A−1
k
.

A consistent estimator of the covariance matrix is given by

DC
jk

(b@
j
, b@
k
)=A−1

j qn−1 ∑n
i=1

UC
ij
(b@
j
)UC ∞
ik
(b@
k
)rA−1k ,

where UC
ik
(b@
k
)=WL

l=1
∆t
0
{Z
ikl

(t)−Z9 k (t)}dMC
ikl

(t) and

MC
ikl

(t)=N
ikl

(t)−P t
0

Y
ikl

(u)b@ ∞
k
Z
ikl

(u)du−P t
0

Y
ikl

(u)dLC
0k

(u; b@
k
).

Based on model (2·1), for a specific subject with the covariate vector z0 (t), the cumula-
tive hazard function can be estimated by LC

k
(t; b@
k
, z
0
)=LC

0k
(t; b@
k
)+∆t
0
b@ ∞
k
z
0
(u)du, and the

survival function by SC
k
(t; z0 )=exp {−L

C
k
(t; b@
k
, z0 )}. For ease of exposition, we suppress

the argument b@
k
in the sequel unless it is necessary to state it explicitly. The baseline

cumulative hazard estimator in (2·3) might not be nondecreasing in t. To ensure mono-
tonicity, we make a minor modification, which still preserves the asymptotic properties,
that is LC *

0k
(t)=max

s∏t
LC
0k

(s) and SC*
k
(t; z
0
)=min

s∏t
SC
k
(s; z
0
), for k=1, . . . , K. Following

similar arguments to those in Lin & Ying (1994), we can show that LC *
0k

(t) and LC
0k

(t) are
asymptotically equivalent in the sense that LC *

0k
(t)−LC

0k
(t)=o

p
(n−D ). A similar modifi-

cation is applied to the upper and lower simultaneous confidence bands constructed in
the next section.

3. C    

We now consider prediction of the survival curve for a specific pattern of covariates.
We define the baseline stochastic processes jointly across all K failure types as

W
n
(t)=nD[{LC01 (t)−L01 (t)}, . . . , {L

C
0K

(t)−L
0K

(t)}]∞.

Let D[0, t]K be a metric space consisting of right-continuous functions { f1 (t), . . . , f
K
(t)}∞

with left-side limits, where f
k
(t) : [0, t]�R for k=1, . . . , K. The metric is defined as

d( f, g)=max
tµ[0,t]

{ | f
k
(t)−g

k
(t) |, 1∏k∏K} for f, gµD[0, t]K.
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805Additive hazards model

T 2. As n�2, W
n
(t) converges weakly to a zero-mean Gaussian random field

W (t) in D[0, t]K, where W (t)={W1 (t), . . . , Wk (t)}∞. T he covariance function between
W
j
(s) and W

k
(t) is j

jk
(s, t)=E{Y

1j
(s)Y
1k

(t)}, for j, k=1, . . . , K, where

Y
ik
(t)=P t

0

dM
ik.

(u)

p
k
(u)
−C∞
k
(t)A−1
k
∑
L

l=1
P t
0
qZikl (t)− zAk (t)

p
k
(t)r dM

ikl
(t) (3·1)

and C
k
(t)=∆t

0
{zAk (u)/p

k
(u)}du.

The dot notation means summation over the corresponding subindex; for example,
M
ik.

(t)=WL
l=1

M
ikl

(t) and Y
.k.

(t)=Wn
i=1
WL
l=1

Y
ikl

(t). A consistent estimator of the

covariance matrix is j@
jk

(s, t)=n−1Wn
i=1

{YC
ij
(s)YC
ik
(t)}, where YC

ik
(t) is defined by replacing

p
k
(t), zAk (t)/pk (t), Ck (t), Ak and M

ikl
(t) with their corresponding empirical estimators

Y
.k.

(t)/n, Z9 k (t), Ck (t)=∆
t
0
Z9 k (u)du, A

k
and MC

ikl
(t) in (3·1).

The proof of Theorem 2 is based on verifying the finite-dimensional distribution con-
vergence and the tightness condition (Billingsley, 1999) as outlined in Appendix 2. For
a given covariate vector z0 (t), the subject-specific stochastic processes are defined as
W
n
(t; z0 )=nD[{LC1 (t; z0 )−L1 (t; z0 )}, . . . , {L

C
K
(t; z0 )−LK (t; z0 )}]∞.

T 3. As n�2, W
n
(t; z0 ) converges weakly to a zero-mean Gaussian random field

W (t; z0 ) in D[0, t]K, where W (t; z0 )={W1 (t; z0 ), . . . , WK (t; z0 )}∞. T he covariance function
between W

j
(s; z0 ) and W

k
(t; z0 ) is j

jk
(s, t; z0 )=E{Y

1j
(s; z0 )Y1k (t; z0 )}, for j, k=1, . . . , K,

where

Y
ik
(t; z
0
)=P t

0

dM
ik.

(u)

p
k
(u)
+G∞
k
(t)A−1
k
∑
L

l=1
P t
0
qZikl (t)− zAk (t)

p
k
(t)r dM

ikl
(t), (3·2)

and G
k
(t; z0 )=∆

t
0
{z
0
(u)−zAk (u)/p

k
(u)}du.

The proof is omitted as it is similar to that of Theorem 2. The covariance function
can be consistently estimated by its empirical counterpart

j@
jk

(s, t; z0 )=n−1 ∑
n

i=1
{YC
ij
(s; z
0
)YC
ik
(t; z
0
)},

where YC
ik
(t; z0 ) is defined by replacing pk (t), zAk (t)/pk (t), Gk (t; z0 ), Ak and M

ikl
(t) with

Y
.k.

(t)/n, Z9 k (t), G
k
(t; z0 )=∆

t
0
{z
0
(u)−Z9 k (u)}du, A

k
and MC

ikl
(t) in (3·2). By the functional

delta method, the joint survival processes for all K failure types,

nD[{SC
1
(t; z
0
)−S
1
(t; z
0
)}, . . . , {SC

K
(t; z
0
)−S
K
(t; z
0
)}]∞,

converge weakly to a zero-mean Gaussian random field inD[0, t]K. A consistent estimator
of the covariance function is given by SC

j
(s; z0 )SCk (t; z0 )j

@
jk

(s, t; z0 ).
The pointwise confidence interval for the survival function at each fixed time point t can

be constructed using the asymptotic properties of SC
k
(t; z0 ). Construction of simultaneous

confidence bands for all t involves the distribution of functionals of the limiting distribution
of W
n
(t; z0 ), which does not have an independent increment structure. We use a simulation

technique of Spiekerman & Lin (1998) to approximate the distribution of W
n
(t; z0 ). Define

WC
n
(t; z0 )={WC 1 (t; z0 ), . . . , WC K (t; z0 )}∞, where WC

k
(t; z
0
)=n−DWn

i=1
YC
ik
(t; z
0
)Q
i
, and the Q

i
’s

are generated independently from the standard normal distribution N (0, 1). Conditional
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on the observed data, the only random variable in WC
k
(t; z0 ) is Q

i
such that WC

k
(t; z0 ) is the

sum of the independent normal random variables. The conditional covariance function of
WC
j
(s; z0 ) and WC

k
(t; z0 ) is n−1Wn

i=1
{YC
ij
(s; z
0
)YC
ik
(t; z
0
)}. Therefore, given the data, WC

n
(t; z0 )

has the same limiting distribution as W
n
(t; z0 ). We generate a large number of random

samples of (Q1 , . . . , Qn ) from N (0, 1), while fixing the data at their observed values. The
next theorem justifies the resampling method.

T 4. Conditional on the observed data

{(N
ikl

(t), Y
ikl

(t), Z
ikl

(t)); tµ[0, t]; i=1, . . . , n; k=1, . . . , K; l=1, . . . , L },

WC
n
(t; z0 ) converges weakly to the same zero-mean Gaussian random field W (t; z0 ) as W

n
(t; z0 )

in D[0, t]K.

The proof is outlined in Appendix 3. To construct the confidence band for S
k
(t; z0 ), we

start by defining a class of transformed processes for failure type k, namely

B(t; z
0
)=nDg(t; z

0
)[w{LC

k
(t; z
0
)}−w{L

k
(t; z
0
)}],

where g ( . ) is a known weight function which converges uniformly to a nonnegative
bounded function on [t1 , t2] (0∏t1∏t2∏t), and w( . ) is a known transformation function
with a nonzero and continuous derivative w∞( . ), such as w( . )=log (.) or w( . )=log {−log (.)}.
The logarithmic transformation can restrict the confidence band to the range [0, 1],
and can improve the coverage probabilities in small samples (Kalbfleisch & Prentice,
2002). The functional delta method yields that B(t; z0 ) is asymptotically equivalent to
g(t; z0 )w∞{L

C
k
(t; z0 )}Wk (t; z0 ).

The (1−a) confidence band for w{L
k
(t; z0 )} is then given by

w{LC
k
(t; z
0
)}An−Dq

a
/g(t; z

0
), (3·3)

where q
a
is defined by pr {sup

i,l(t
1
∏X
ikl
∏t
2
)
|B(X

ikl
; z
0
)|>q

a
}=a. The critical constant q

a
can be obtained by choosing the (1−a)th quantile from the large number of copies
of {sup

i,l(t
1
∏X
ikl
∏t
2
)
|B(X

ikl
; z
0
) |}. Appropriately chosen weight functions may narrow the

width of the confidence band at the time range of interest. Let s@2
k
(t; z
0
) be the variance

function estimator at time t of the process W
k
(t; z0 ), that is s@2k (t; z0 )=j

@
kk

(t, t; z
0
) for

k=1, . . . , K. The equal-precision band (Nair, 1984) defines the weight function to be
g(t; z0 )=L

C
k
(t; z0 )/s@ k (t; z0 ), while the Hall–Wellner band (Hall & Wellner, 1980) requires

that g(t; z
0
)=LC

k
(t; z
0
)/{1+s@2

k
(t; z
0
)}. The valid range of confidence bands is usually

restricted to the first and last uncensored observations. The range might be further
restricted to [t

1
, t
2
] (Nair, 1984; Chen & Ying, 1996), because of the unstable estimation in

the tails. For b=1 and b=2, t
b
can be obtained by solving c

b
=s@2 (t

b
; z
0
)/{1+s@2 (t

b
; z
0
)},

where (c1 , c2 ) may be prespecified to be (0·1, 0·9).

4. P    

We extend the methods to the partly parametric additive hazards model, which
McKeague & Sasieni (1994) studied for independent failure time data. When the effect of
some covariates, for example R

ikl
, may vary over time, a q×1 vector of time-varying

coefficients a
0k

(t) is introduced in the model, so that

l
ikl

(t; R
ikl

, Z
ikl

)=a
0k

(t)∞R
ikl
+b∞
0k

Z
ikl

. (4·1)
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For the kth failure type, the loglikelihood function based on (4·1) is given by

l
k
(b, a)= ∑

n

i=1
∑
L

l=1
CDikl log {a(X

ikl
)∞R
ikl
+b∞Z

ikl
}−P t

0
Y
ikl

(t){a(t)∞R
ikl
+b∞Z

ikl
}dtD .

The derivative with respect to b is

∂l
k
(b, a)

∂b
= ∑
n

i=1
∑
L

l=1
q DiklZikll
ikl

(X
ikl

)
−P t
0

Y
ikl

(t)Z
ikl

Z∞
ikl
b

l
ikl

(t)
dt−P t

0

Y
ikl

(t)Z
ikl

R∞
ikl
a(t)

l
ikl

(t)
dtr .

Let Z
k
={Z

1k1
Y
1k1

(t), . . . , Z
nkL

Y
nkL

(t)}∞, let R
k
be defined similarly, let

l−1
k

(t)=diag {1/l
ikl

(t), i=1, . . . , n; l=1, . . . , L }

be an (nL×nL ) diagonal matrix, and let N
k
(t)={N

1k1
(t), . . . , N

nkL
(t)}∞ be an (nL )-

dimensional counting process vector. If we define V
k
(t)=∆t

0
a
k
(u)du and set ∂l

k
(b,a)/∂b=0,

we have

b
k
=qP t

0
Z∞
k
l−1
k

(t)Z
k
dtr−1qP t

0
Z∞
k
l−1
k

(t)dN
k
(t)−P t

0
Z∞
k
l−1
k

(t)R
k
dV
k
(t)r .

For a(t), consider the submodel a(t)=b0 (t)+gb(t), where g is a scalar and b(t) is a given
(q×1) vector of functions. The derivative with respect to g is

∂l
k
(b, g)

∂g
= ∑
n

i=1
∑
L

l=1
qDiklb(X

ikl
)∞R
ikl

l
ikl

(X
ikl

)
−P t
0

Y
ikl

(t)b(t)∞R
ikl

R∞
ikl
a(t)

l
ikl

(t)
dt

−P t
0

Y
ikl

(t)b(t)∞R
ikl

Z∞
ikl
b

l
ikl

(t)
dtr .

Since this submodel is a special case of model (4·1), an estimator for (4·1) should work
on all submodels. If we solve ∂l

k
(b, g)/∂g=0 for all vector-valued functions b(t), we obtain

V
k
(t)=P t

0
{R∞
k
l−1
k

(u)R
k
}−1{R∞

k
l−1
k

(u)dN
k
(u)−R∞

k
l−1
k

(u)Z
k
b
k
du}.

By plugging V
k
(t) into the expression for b

k
, we finally have

b
k
=qP t

0
Z∞
k
H
k
(t)Z
k
dtr−1 P t

0
Z∞
k
H
k
(t)dN

k
(t), (4·2)

whereH
k
(t)=l−1

k
(t)−l−1

k
(t)R
k
{R∞
k
l−1
k

(t)R
k
}−1R∞

k
l−1
k

(t). As shown in (4·2), b
k
resembles

a weighted least squares estimator, but b
k
still depends on the unknown l−1

k
(t). When we

replace l−1
k

(t) by the identity matrix I, so that H
k
(t)=I−R

k
(R∞
k
R
k
)−1R∞

k
, b
k
reduces to

the ordinary least squares estimator. The estimation algorithm proceeds as follows: first
use I instead of l−1

k
(t) to obtain the initial values for b

k
and V

k
(t), denoted by b(0)

k
and

V(0)
k

(t); next, based on V(0)
k

(t), estimate a
k
(t) nonparametrically using the kernel smoothing

method (Bowman & Azzalini, 1997); then obtain the estimator l@−1
k

(t) based on (4·1); and
finally substitute l−1

k
(t) by l@−1

k
(t) to obtain the final estimators b@

k
and VC

k
(t).
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Noting that HC
k
(t) is orthogonal to R

k
, and using (4·1) and the decomposition

M
ikl

(t)=N
ikl

(t)−P t
0

Y
ikl

(u)l
ikl

(u; R
ikl

, Z
ikl

)du,

we have

P t
0
Z∞
k
HC
k
(t)dM

k
(t)=P t

0
Z∞
k
HC
k
(t)dN

k
(t)−qP t

0
Z∞
k
HC
k
(t)Z
k
dtr b0k ,

and thus

nD (b@
k
−b
0k

)=qn−1 P t
0
Z∞
k
HC
k
(t)Z
k
dtr−1 n−D P t

0
Z∞
k
HC
k
(t)dM

k
(t),

where M
k
(t)={M

1k1
(t), . . . , M

nkL
(t)}∞. By arguments similar to those in Appendix 1, the

asymptotic normality of nD (b@ ∞
1
, . . . , b@ ∞

K
)∞ can be proved. Furthermore, by noting that

nD{VC
k
(t)−V

0k
(t)}=nD P t

0
{R∞
k
l@
k
(u)−1R

k
}−1R

k
l@
k
(u)−1dM

k
(u)

−CP t
0

{R∞
k
l@
k
(u)−1R

k
}−1R

k
l@
k
(u)−1Z∞

k
duD nD (b@ k−b0k ),

we can show that nD{VC
k
(t)−V

0k
(t)} converges weakly to a zero-mean Gaussian random

field based on arguments similar to those in Appendix 2.
The estimation procedures for (2·1) and (4·1) are very different. The former mimics

the partial likelihood score function, and the latter involves the nonparametric hazard
estimation. A larger sample size would be required to estimate the hazard function reliably
in a nonparametric manner.

5. S 

To investigate the properties of our proposed method with practical sample sizes, we
conducted extensive simulation studies. For the first part of the simulations, we chose
marginal exponential distributions for the two distinct failure types, K=2, and a constant
cluster size of two, L=2, within each failure type. We generated the failure times for the
ith cluster, T

i11
, T
i12
, T
i21
and T

i22
(i=1, . . . , n), from the multivariate Clayton–Oakes

model (Clayton & Cuzick, 1985; Oakes, 1989). The joint survival function was given by

pr (T
i11
>t
i11

, T
i12
>t
i12

, T
i21
>t
i21

, T
i22
>t
i22
|Z
i11

, Z
i12

, Z
i21

, Z
i22

)

=C ∑2
k=1
∑
2

l=1
expq (l0k+b∞Zikl )tiklh r−3D−h,

where h>0, and smaller h induced larger correlation. The parameter h was preset to
be 3·9, 1·2 or 0·31, which corresponded to the within cluster correlation of the failure times
of r=0·2, 0·5 or 0·8 for the first failure type, and r=0·23, 0·56 or 0·87 for the second
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809Additive hazards model

failure type, respectively. Different baseline hazards were assumed for the two failure types,
namely l01=2 and l02=4. Two covariates were included in the model: one was a binary
variable, Z1 , taking the value of 0 or 1 with probability 0·5, and the other was a continuous
variable, Z2 , generated independently from Un (0, 5). The true regression coefficients were
preset at b1=1, categorical, and b2=0·5, continuous. The censoring times were generated
independently from Un (0, a), with a=1·1, 0·43, 0·16 to achieve approximately 25%, 50%
and 75% censoring rates for k=1, and 16%, 37% and 65% for k=2. For each simulation
configuration, 500 replicated samples were generated, and the number of clusters, n, was
100 and 150. We evaluated the small sample size properties of b@ and the coverage properties
of the robust equal-precision, R , and Hall–Wellner, R , 95% confidence bands. The
robust bands were constructed with adjustment for the intraclass correlation, while the
naive method did not take the correlation into account. To illustrate the empirical coverage
rates of the simultaneous confidence bands, we set z0= (1, 0)∞ to estimate the survival
curve and its bands. We independently generated 1000 simple random samples (Q1 , . . . , Qn )
from N (0, 1) for obtaining the critical constant q

a
in (3·3).

For each of the data realisations, we obtained the pointwise estimates of the regression
coefficients and the sandwich-type variance estimators. We calculated the sample standard
deviations, , the average of the estimated standard errors, , and the 95% nominal
level coverage rates, . As shown in Table 1, both of the point estimators b@1 and b

@
2 are

approximately unbiased and approach the true values as the sample size increases.
Comparing the columns ‘’ and ‘’ suggests that the variance estimators provide good
estimation of the variability of the regression coefficient estimators. The 95% confidence
interval coverage rates are close to the nominal level, which ensures the adequacy of
the asymptotic approximations for practical use. The variation of b@ becomes smaller
with an increased sample size and becomes larger with an increased censoring rate. We
also examined the scenarios with n=25 and 50, where similar conclusions were drawn.
The equal-precision and Hall–Wellner 95% confidence bands were constructed, and the
corresponding simultaneous coverage rates, R and R , were calculated. The empirical
coverage rates of the confidence bands were satisfactory and close to 95%. The results
provide empirical evidence that the approximation method by resampling many Q

i
’s from

N (0, 1) works well.
We carried out another set of simulations with a single failure type and the cluster

size of four, that is K=1 and L=4. The baseline hazard function was chosen to be
from a Weibull distribution, for example l0 (t)=ct. The failure times of the ith cluster
(T
i1

, T
i2

, T
i3

, T
i4
) were generated from the Clayton–Oakes model with

pr (T
i1
>t
i1

, T
i2
>t
i2

, T
i3
>t
i3

, T
i4
>t
i4
|Z
i1

, Z
i2

, Z
i3

, Z
i4

)

=q ∑4
l=1
expAct2il2h

+
b∞Z
il
t
il

h B−3r−h,
where we chose c=1. The correlation parameter h was preset at 3·6, 1 or 0·24 for
the within-cluster correlation of r=0·2, 0·5 or 0·8, respectively. Two covariates were
generated independently, of which Z1 is a categorical variate taking the value of 0 or 1
with probability 0·5, and Z2~Un (0, 2). The true regression coefficients were prespecified
as b1=0·2 and b2=0·7. The censoring times were generated independently from Un (0, a)
with a prespecified to be 3, 1·4 or 0·62 to achieve approximately 25%, 50% or 75%
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Table 1: First simulation study. Estimates and confidence bands for cluster size of 2
with b

1
=1 and b

2
=0·5

n r c% b@1    b@2    R R
Failure Type 1

100 0·2 25 1·024 0·613 0·606 94·6 0·502 0·212 0·208 95·4 96·0 94·6
50 0·986 0·721 0·744 96·2 0·496 0·260 0·258 95·8 92·2 90·0
75 1·031 1·090 1·066 95·4 0·480 0·373 0·370 95·6 94·2 93·0

0·5 25 1·031 0·621 0·607 93·6 0·501 0·215 0·208 94·2 95·4 94·0
50 0·991 0·730 0·746 94·8 0·497 0·260 0·258 94·6 94·8 92·6
75 1·019 1·085 1·065 95·8 0·474 0·383 0·369 94·2 92·8 91·6

0·8 25 1·028 0·611 0·606 94·2 0·506 0·220 0·208 93·6 97·0 94·2
50 0·977 0·737 0·747 96·4 0·502 0·263 0·260 96·4 94·4 92·8
75 0·990 1·049 1·061 94·6 0·482 0·382 0·370 93·6 93·8 92·4

150 0·2 25 1·041 0·529 0·496 92·8 0·508 0·189 0·172 92·4 97·0 95·2
50 1·064 0·643 0·614 93·6 0·511 0·227 0·213 94·0 93·6 91·4
75 1·037 0·885 0·874 95·0 0·518 0·298 0·304 95·2 96·6 94·0

0·5 25 1·050 0·514 0·499 94·0 0·514 0·193 0·174 92·6 96·0 95·0
50 1·074 0·625 0·616 95·2 0·514 0·229 0·214 93·4 94·8 93·8
75 1·049 0·884 0·878 95·2 0·521 0·295 0·304 95·6 95·2 93·0

0·8 25 1·057 0·509 0·502 95·4 0·521 0·191 0·176 92·0 96·0 95·2
50 1·078 0·618 0·619 95·4 0·519 0·233 0·216 94·2 94·2 94·4
75 1·075 0·866 0·879 94·8 0·540 0·296 0·306 95·8 96·0 94·6

Failure Type 2
100 0·23 16 1·011 0·911 0·888 94·4 0·512 0·333 0·308 91·8 95·4 94·2

37 1·002 1·086 1·028 94·4 0·505 0·377 0·357 93·4 94·2 94·0
65 1·029 1·417 1·382 96·0 0·541 0·500 0·482 93·4 94·0 92·4

0·56 16 0·979 0·909 0·883 93·8 0·505 0·336 0·305 92·2 94·6 93·0
37 1·008 1·052 1·027 95·0 0·500 0·376 0·356 93·4 94·0 92·8
65 1·014 1·453 1·381 95·6 0·519 0·503 0·481 95·4 95·2 95·0

0·87 16 0·982 0·871 0·873 95·4 0·496 0·324 0·303 93·0 97·0 94·6
37 0·986 1·044 1·021 93·8 0·486 0·356 0·354 95·2 96·2 94·6
65 1·002 1·503 1·381 94·2 0·482 0·499 0·483 95·4 93·2 93·0

150 0·23 16 1·008 0·760 0·730 93·2 0·508 0·267 0·253 95·0 93·8 91·6
37 0·962 0·878 0·846 94·4 0·508 0·312 0·293 92·4 94·6 92·0
65 0·916 1·178 1·134 94·4 0·498 0·408 0·393 93·8 94·4 91·0

0·56 16 1·005 0·739 0·731 93·8 0·505 0·272 0·253 91·6 95·2 92·8
37 0·977 0·866 0·847 93·8 0·503 0·308 0·294 92·4 94·2 91·6
65 0·925 1·192 1·139 93·4 0·504 0·414 0·396 95·0 93·8 93·0

0·87 16 1·015 0·723 0·727 96·2 0·501 0·266 0·252 92·0 97·0 93·4
37 0·967 0·839 0·847 95·2 0·496 0·296 0·294 93·6 96·6 94·0
65 0·946 1·137 1·143 95·2 0·500 0·434 0·398 92·6 94·4 92·6

, standard deviation; , average of estimated standard errors; , 95% coverage rate; R and R ,
simultaneous coverage rates of equal-precision and Hall–Wellner bands, respectively.

censoring rates. The number of clusters was n=50 and 100, and 500 simulations were
performed for each scenario. We estimated the survival curve for z0= (1, 0·5)∞ and con-
structed the corresponding 95% simultaneous confidence bands. We also constructed the
naive bands, N and N , by ignoring the underlying failure time correlation. Observing
E{M

ikl
(t)}=0 and var {M

ikl
(t)}=E{N

ikl
(t)}, in the naive method we replace M

ikl
(t) by

 at U
niversity of H

ong K
ong on Septem

ber 2, 2013
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


811Additive hazards model

N
ikl

(t)Q
ikl
in (3·2), where the Q

ikl
’s were generated independently from N (0, 1) (Lin et al.,

1993; 1994). The results are summarised in Table 2, which shows the appropriateness of
the asymptotic approximation for the regression parameters and the simulation methods
for the construction of the confidence bands with finite sample sizes. A comparison between
the robust and naive bands indicates that the naive method performs poorly, especially
when the underlying failure time correlation is high.

Table 2: Second simulation study. Estimates and confidence bands for cluster size of 4 with
b
1
=0·2 and b

2
=0·7

r c% b@1    b@2    R R N N
n=50

0·2 0 0·202 0·189 0·178 93·0 0·711 0·180 0·167 92·6 94·8 93·0 94·4 93·8
25 0·207 0·209 0·197 92·2 0·724 0·192 0·181 93·0 94·8 93·8 94·6 93·6
50 0·205 0·220 0·219 95·6 0·698 0·198 0·200 94·8 91·2 91·0 93·0 92·6
75 0·225 0·292 0·271 93·6 0·728 0·249 0·244 93·8 95·4 92·0 92·2 92·0

0·5 0 0·202 0·184 0·174 93·6 0·724 0·193 0·172 91·4 95·8 93·8 93·4 91·6
25 0·212 0·212 0·198 93·4 0·730 0·199 0·187 92·8 94·4 92·8 93·0 92·2
50 0·219 0·236 0·219 92·8 0·724 0·224 0·206 93·4 92·4 90·0 91·0 90·0
75 0·221 0·295 0·272 92·6 0·723 0·261 0·250 93·0 95·6 90·4 92·4 90·6

0·8 0 0·209 0·182 0·171 92·6 0·747 0·204 0·178 91·6 94·6 91·4 85·8 84·0
25 0·214 0·206 0·196 93·0 0·729 0·206 0·193 93·2 93·2 92·4 88·0 86·6
50 0·213 0·234 0·219 93·4 0·718 0·220 0·215 95·2 92·2 90·8 87·4 86·2
75 0·216 0·282 0·271 93·2 0·722 0·269 0·262 94·6 95·8 93·0 89·2 87·2

n=100
0·2 0 0·205 0·129 0·129 94·8 0·700 0·124 0·121 94·4 95·8 93·4 95·2 93·2

25 0·197 0·138 0·141 95·2 0·703 0·139 0·130 93·2 96·6 94·4 96·4 93·2
50 0·203 0·159 0·156 95·4 0·710 0·149 0·142 93·6 92·6 90·6 93·2 93·0
75 0·206 0·200 0·194 93·4 0·707 0·185 0·172 93·6 96·0 91·8 94·2 91·8

0·5 0 0·208 0·130 0·128 95·0 0·710 0·132 0·126 91·6 95·2 92·2 92·4 91·2
25 0·200 0·140 0·141 95·4 0·710 0·146 0·135 93·2 97·6 94·6 93·6 89·4
50 0·201 0·159 0·156 94·6 0·712 0·153 0·146 94·6 95·6 92·2 92·6 91·8
75 0·206 0·201 0·194 94·0 0·702 0·183 0·177 94·0 96·0 92·8 92·4 92·0

0·8 0 0·216 0·131 0·128 93·8 0·722 0·138 0·130 93·0 96·2 93·4 86·6 81·8
25 0·205 0·139 0·140 94·6 0·715 0·146 0·139 94·0 96·2 94·0 88·0 83·6
50 0·200 0·153 0·156 96·0 0·707 0·155 0·152 94·2 96·6 94·4 89·0 86·6
75 0·208 0·194 0·194 95·4 0·707 0·186 0·185 94·4 97·0 94·6 90·8 88·4

, standard deviation; , average of estimated standard errors; , 95% coverage rate; R and R are
the simultaneous coverage rates of equal-precision and Hall–Wellner bands, and N and N are the naive
ones, respectively.

6. F H S

We applied our inference procedures to data from the Framingham Heart Study. The
objective of the study was to identify the risk factors or characteristics that contribute to
cardiovascular disease by following a large number of disease-free participants, those with
no overt symptom and who had not suffered a heart attack or stroke, over a long period
of time. The study was initiated in 1948 and the subjects were examined every two years.
Multiple failure outcomes were recorded from the same subject, e.g. coronary heart disease
and cerebrovascular accident.
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We considered the first manifestations of coronary heart disease and cerebrovascular
accident as two different events, that is K=2. The times to event were recorded in
years. In this analysis, we had 1571 individuals, of whom 233 experienced coronary
heart disease but not cerebrovascular accident, 34 experienced cerebrovascular accident
but not coronary heart disease, and 17 experienced both. There were 113 sibling clusters
of size 2, 24 of size 3 and 3 of size 4. For comparison, we also fitted the Cox-type marginal
regression model. The analyses based on the additive and multiplicative hazards models
are summarised in Table 3. The absolute values of the parameter estimates from the
additive hazards model are much smaller than those from the Cox model, which is often
the case. The estimates from the additive hazards and Cox models have the same signs,
indicating the same directions of the covariate effects, while the p-values for the two
models differ.

Table 3. Analysis of data from the Framingham Heart Study under the additive
and multiplicative hazards models

Additive hazards model
Coronary heart disease Cerebrovascular accident

Covariate b@×10−3 ×10−3 p-value b@×10−3 ×10−3 p-value

Smoke (yes=1, no=0) 2·4562 1·4038 0·080 0·9713 0·6215 0·118
Sex (female=1, male=0) −5·1987 1·4343 <0·001 −0·3027 0·6206 0·626
Body mass index 0·2499 0·0776 0·001 0·0871 0·0428 0·042
Cholesterol 0·0363 0·0060 <0·001 0·0037 0·0030 0·218
Systolic blood pressure 0·1023 0·0321 0·001 0·0204 0·0119 0·086
Diastolic blood pressure 0·0800 0·0455 0·079 0·0378 0·0174 0·029
Waiting time (years) 0·0127 0·0614 0·836 0·0337 0·0199 0·091

Multiplicative hazards model
Coronary heart disease Cerebrovascular accident

Covariate b@  p-value b@  p-value

Smoke (yes=1, no=0) 0·3157 0·1414 0·026 0·6412 0·3204 0·045
Sex (female=1, male=0) −0·6203 0·1335 <0·001 −0·1979 0·2822 0·480
Body mass index 0·0308 0·0179 0·085 0·0486 0·0359 0·180
Cholesterol 0·0042 0·0016 0·007 0·0021 0·0033 0·530
Systolic blood pressure 0·0120 0·0072 0·096 0·0114 0·0154 0·460
Diastolic blood pressure 0·0095 0·0122 0·440 0·0246 0·0249 0·320
Waiting time (years) 0·0010 0·0200 0·960 0·0248 0·0458 0·590

, standard error.

To illustrate the prediction of the survival probability for a given subject, Fig. 1 shows
the estimated survival curves for a male smoker with body mass index of 35 kg/m2,
cholesterol level of 360 mg/dl, systolic blood pressure of 160 mm Hg, diastolic blood
pressure of 90 mm Hg and waiting time of 10 years. The pointwise confidence intervals
from the additive hazards model are much narrower than those from the Cox model. The
equal-precision and Hall–Wellner 95% confidence bands are constructed for the same
subject with 10 000 copies of Q

i
random samples based on the simulation method. Figure 2

presents the 95% simultaneous confidence bands with the estimated survival curves of
coronary heart disease and cerebrovascular accident. The equal-precision band is narrower
in the two tails and the Hall–Wellner band is narrower in the middle of the range.
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813Additive hazards model

Fig. 1: Framingham Heart Study. Survival curves under the additive
hazards (bold solid curve) and Cox (thin solid curve) models, for
(a) coronary heart disease and (b) cerebrovascular accident of a
subject with covariates smoke=1, sex=male, body mass index=35,
cholesterol=360, systolic blood pressure=160, diastolic blood
pressure=90, waiting time=10, and the corresponding 95%

pointwise confidence intervals (dotted curves).

7. R

Unlike maximisation of the partial likelihood function in the Cox model, solution of
the estimating equation (2·4) does not require any iterative numerical procedure: the
parameter estimates have a closed form. In principal, efficiency could be gained by
incorporating an appropriate weight into (2·4). However, as pointed out by Lin & Ying
(1994) for the case of independent data, the efficiency loss is usually very small.
As demonstrated in the simulation study, ignoring the correlation would result in under-

coverage of the true survival curve, which becomes severe when there is high correlation.
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Fig. 2: Framingham Heart Study. Equal-precision (dotted curves)
and Hall–Wellner (solid curves) 95% confidence bands for the
survival curves for (a) coronary heart disease and (b) cerebrovascular
accident, under the additive hazards model. The middle, bold solid
curve is the point estimate of the survival curve for the subject with

z0= (1, 0, 35, 360, 160, 90, 10)∞.

An alternative to our proposed resampling method could be the bootstrap method using
the clusters as the sampling units to preserve the intracluster correlation.
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A 1
L arge-sample distribution of (b@ ∞

1
, . . . , b@ ∞

K
)∞

For l=1, . . . , L , k=1, . . . , K, i=1, . . . , n and some constant t>0, we assume the following set
of regularity conditions throughout this paper: pr {Y

ikl
(t)=1, tµ[0, t]}>0; ∆t

0
l
0k

(t)dt<2 for
each k; the covariate vector Z

ikl
(t) is bounded for tµ[0, t]; and A

k
is positive definite.

By the functional central limit theorem (Pollard, 1990, Theorem 10.6), it can be shown that
n−1/2Wn

i=1
WL
l=1

M
ikl

(t) converges in distribution to a zero-mean Gaussian process with continuous
sample paths. The strong representation theorem (Pollard, 1990, Theorem 9.4) and Lemma A.3 of
Bilias et al. (1997) entail that

n−1/2 ∑
n

i=1
∑
L

l=1
P t
0
qZ9 k (t)− zAk (t)

p
k
(t)r dM

ikl
(t)� 0, (A1·1)

in probability, as n�2. For failure type k, we have

n1/2 (b@
k
−b
0k

)=n−1/2A−1
k
∑
n

i=1
∑
L

l=1
CP t
0

{Z
ikl

(t)−Z9 k (t)}dN
ikl

(t)

−P t
0

Y
ikl

(t){Z
ikl

(t)−Z9 k (t)}E2b0kdtD
=n−1/2A−1

k
∑
n

i=1
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dM
ikl

(t).

Under the regularity conditions, if we apply (A1·1), the above quantity can be shown to be
asymptotically equivalent to n−1/2A−1

k
Wn
i=1

U
ik
(b
0k

), where U
ik
(b
0k
) is defined as in (2·5). Note

that A
k
converges in probability to A

k
, and U

ik
(b
0k
) (i=1, . . . , n) are independent and identically

distributed random vectors. By the multivariate central limit theorem and Slutsky’s theorem,
Theorem 1 follows.

A 2
Weak convergence properties of W

n
(t)

With similar arguments to those in Appendix 1, we can show that, as n�2,

n−1/2 ∑
n

i=1
P t
0
q 1

n−1Y
.k.

(u)
−

1

p
k
(u)r dM

ik.
(u)� 0, (A2·1)

in probability. For failure type k, if we plug in (2·3), the baseline cumulative hazard process can
be written as

W
nk

(t)=n1/2{LC
0k

(t; b@
k
)−LC

0k
(t; b
0k

)}+n1/2{LC
0k

(t; b
0k

)−L
0k

(t)}

=n1/2 P t
0

Wn
i=1
WL
l=1

Y
ikl

(u)(b
0k
−b@
k
)∞Z
ikl

(u)du

Wn
i=1
WL
l=1

Y
ikl

(u)

+n1/2 P t
0

Wn
i=1
WL
l=1

{dN
ikl

(u)−Y
ikl

(u)b∞
0k

Z
ikl

(u)du−Y
ikl

(u)l
0k

(u)du}

Wn
i=1
WL
l=1

Y
ikl

(u)

=n−1/2 ∑
n

i=1
CP t
0

dM
ik.

(u)

n−1Y
.k.

(u)
−C∞
k
(t)A−1
k
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dM
ikl

(t)D .
Coupling with (A1·1), it can be shown that W

nk
(t) is asymptotically equivalent to n−1/2Wn

i=1
Y
ik
(t),

where {Y
1k

(t), . . . , Y
nk

(t)} given in (3·1), are independent and identically distributed random
variables, for each fixed t. Hence, for any finite number of time points (t1 , . . . , tm ), it can be
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shown that the joint distribution of {W
nk

(t1 ), . . . , Wnk (tm )}∞ is asymptotically normal with mean
zero; that is the finite-dimensional distributional convergence follows from the multivariate central
limit theorem. Next, we prove the tightness condition of W

nk
(t) in order to ensure the weak con-

vergence property of the processes. Since the space of D[0, t]K is equipped with the uniform
metric, the tightness of W

nk
(t) follows from the tightness of W (1)

nk
(t)=n1/2 ∆t

0
dM
.k.

(u)/Y
.k.

(u) and
W (2)
nk

(t)=n1/2 (b@
k
−b
0k

)∞C
k
(t). It follows from the weak convergence of n−1/2M

.k.
(t) and (A2·1) that

W (1)
nk

(t) converges weakly to a zero-mean Gaussian process. Thus, W (1)
nk

(t) is tight by Theorem 10.2
of Pollard (1990), and the tightness of W (2)

nk
(t) follows from Theorem 1. Hence, W

n
(t) converges to

a zero-mean Gaussian random field in D[0, t]K.

A 3
Weak convergence properties of WC

n
(t; z0 )

Without loss of generality, we now prove that, conditional on the data, WC
n
(t) converges weakly

to the same zero-mean Gaussian random field W(t) as W
n
(t) in D[0, t]K. The proof for the

weak convergence of WC
n
(t; z0 ), follows similar arguments. Note that WC

n
(t)={WC

n1
(t), . . . , WC

nK
(t)}∞,

where WC
nk

(t)=n−1/2Wn
i=1
YC
ik
(t)Q
i
, for k=1, . . . , K, and the Q

i
’s are generated independently from

N(0, 1). Define WB
n
(t)={WB

n1
(t), . . . , WB

nK
(t)}∞, where WB

nk
(t)=n−1/2Wn

i=1
Y
ik
(t)Q
i
. By the proof of

Theorem 2, n−1/2{Y.1 (t), . . . , Y.K (t)}∞ converges weakly to W(t) unconditionally. Based on the
conditional multiplier central limit theorem in van der Vaart & Wellner (1996, Theorem 2.9.6),
WB
n
(t) converges weakly in probability to W (t) conditional on the data. It suffices to prove that

dWB
nk

(t)−WC
nk

(t)d� 0 in probability, where d f (t)d=sup
tµ[0,t]

| f (t) | for a function f : [0, t]�R.

Now, we consider dWB
nk

(t)−WC
nk

(t)d∏dW (d,1)
nk

(t)d+dW (d,2)
nk

(t)d, where

W (d,1)
nk

(t)=n−1/2 ∑
n

i=1
∑
L

l=1
P t
0
qQidM

ikl
(u)

p
k
(u)

−
Q
i
dMC
ikl

(u)

n−1Y
.k.

(u) r ,
W (d,2)
nk

(t)=n−1/2 ∑
n

i=1
Q
i
C∞
k
(t)A−1
k
∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dMC
ikl

(t)

−n−1/2 ∑
n

i=1
Q
i
C∞
k
(t)A−1
k
∑
L

l=1
P t
0
qZikl (t)− zAk (t)

p
k
(t)r dM

ikl
(t).

Some algebraic manipulation yields that,

dW (d,1)
nk

(t)d∏Ln−1/2 ∑n
i=1
∑
L

l=1
Q
iq 1

p
k
(X
ikl

)
−

1

n−1Y
.k.

(X
ikl

)rDiklI(Xikl∏t)L
+Ln−1/2 ∑n

i=1
P t
0

Q
i
Y
ik.

(u)q dLC
0k

(u)

n−1Y
.k.

(u)
−

dL
0k

(u)

p
k
(u) rL

+Ln−1/2 ∑n
i=1
∑
L

l=1
P t
0

Q
i
Y
ikl

(u)q b@ ∞
k

n−1Y
.k.

(u)
−
b∞
0k
p
k
(u)rZikl (u)duL . (A3·1)

The first term on the right-hand side of (A3·1) asymptotically converges to zero in probability by
Lemma A.3 in Spiekerman & Lin (1998) and the fact that, uniformly,

dn−1Y
.k.

(t)−p
k
(t)d� 0, (A3·2)

in probability. The second term of (A3·1) converges to zero by Lemma A.3 and Theorem 2 in
Spiekerman & Lin (1998) and (A3·2). The third term of (A3·1) converges to zero by Lemma A.3
and Theorem 2 in Spiekerman & Lin (1998), Theorem 1 and (A3·2).
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Note that dW (d,2)
nk

(t)d is bounded above by

L{C∞k (t)A−1k −C∞
k
(t)A−1
k

}n−1/2 ∑
n

i=1
Q
i
s@
ik.L+LC∞k (t)A−1k n−1/2 ∑

n

i=1
Q
i
(s@
ik.
−s
ik.

)L , (A3·3)

where

s@
ik.
= ∑
L

l=1
P t
0

{Z
ikl

(t)−Z9 k (t)}dMC
ikl

(t), s
ik.
= ∑
L

l=1
P t
0
qZikl (t)− zAk (t)

p
k
(t)r dM

ikl
(t).

By the uniform convergence of C
k
(t) to C

k
(t), and A

k
to A

k
, and the fact that n−1/2Wn

i=1
Q
i
s@
ik.

converges to a normal distribution, the first term in (A3·3) converges to zero. The second term
in (A3·3) goes to zero because n−1/2Wn

i=1
Q
i
(s@
ik.
−s
ik.

)� 0 in probability, and thus the proof is
complete.
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