- Yuan, H., Lu, K. and Li, G. (2023+) Volatility Analysis with High-frequency and Low-frequency Historical Data, and Options-Implied Information, Statistica Sinica. In press.
- Wang, D., Zheng, Y. and Li, G. (2023+), High-dimensional low-rank tensor autoregressive time series modeling,
Journal of Econometrics. In press.
- Yuan, H., Lu, K., Li, G. and Wang, J. (2023+) High-Frequency-Based Volatility Model with Network Structure, Journal of Time Series Analysis. In press.
- Zhu, Q., Tan, S., Zheng, Y. and Li, G. (2023), Quantile autoregressive conditional heteroscedasticity,
Journal of the Royal Statistical Society, Series B 85, 1099-1127.
- Gao, Y., Zhu, X., Qi, H., Li, G., Zhang, R. and Wang, H. (2023) An asymptotic analysis of random partition based minibatch momentum methods for linear regression models, Journal of Computational and Graphical Statistics 32, 1083-1096.
- Zhang, X, Wang, D., Lian, H and Li, G. (2023) Nonparametric quantile regression for homogeneity pursuit in panel data models, Journal of Business & Economic Statistics 41, 1238-1250.
- Zheng, Y., Wu, J., Li, W. K. and Li, G. (2023) Least absolute deviations estimation for nonstationary vector autoregressive time series models with pure unit roots, Statistics and Its Interface 16, 199-216.
- Pan, R., Ren, T., Guo, B., Li, F., Li, G. and Wang, H. (2022) A note on distributed quantile regression by pilot sampling and one-step updating, Journal of Business & Economic Statistics 40, 1691-1700.
- Zhu, Q. and Li, G. (2022) Quantile double autoregression, Econometric Theory 38, 793–839.
- Wang, D., Zheng, Y., Lian, H. and Li, G. (2022) High-dimensional vector autoregressive time series modeling via tensor decomposition, Journal of the American Statistical Association 117, 1338-1356. (arXiv; GitHub)
- Wang, G., Zhu, K., Li, G. and Li, W.K. (2022) Hybrid Quantile Estimation for Asymmetric Power GARCH Models, Journal of Econometrics 227, 264-284.
- Zhang, Y., Lian, H., Li, G. and Zhu, Z. (2021) Functional additive quantile regression, Statistica Sinica 31, 1331-1351.
- Zhu, Q., Li, G. and Xiao, Z. (2021) Quantile Estimation of Regression Models with GARCH-X Errors, Statistica Sinica 31, 1261-1284.
- Cai, Y. and Li, G. (2021) A quantile function approach to the distribution of
financial returns following TGARCH models, Statistical Modelling 21, 189–219.
- Li, D., Zeng, R., Zhang, L., Li, W.K. and Li, G. (2020) Conditional quantile estimation for hysteretic autoregressive models, Statistica Sinica 30, 809-824.
- Zhu, Q., Zeng, R. and Li, G. (2020) Bootstrap inference for GARCH models by the least absolute deviation estimation, Journal of Time Series Analysis 41, 21-40.
- Dong, C., Li, G. and Feng, X. (2019) Lack-of-fit tests for quantile regression models, Journal of the Royal Statistical Society, Series B 81, 629-648. (GitHub)
- Wu, J., Li, G. and Xia, Q. (2018) Moment-based tests for random effects in the two-way error component model with unbalanced panels, Economic Modelling 74, 61-76.
- Zhu, Q., Zheng, Y. and Li, G. (2018) Linear double autoregression, Journal of Econometrics 207, 162-174.
- Zheng, Y., Zhu, Q., Li, G. and Xiao, Z. (2018) Hybrid quantile regression estimation for time series models with conditional heteroscedasticity, Journal of the Royal Statistical Society, Series B 80, 975-993. (R code)
- Zheng, Y., Li, W.K. and Li, G. (2018) A robust goodness-of-fit test for generalized autoregressive conditional heteroscedastic models, Biometrika 105, 73-89.
- Zhu, X., Pan, R., Li, G., Liu, Y. and Wang, H. (2017) Network vector autoregression, Annals of Statistics 45, 1096–1123.
- Li, G., Zhu, Q., Liu, Z. and Li, W.K. (2017) On mixture double autoregressive time series models, Journal of Business & Economic Statistics 35, 306-317.
- Zheng, Y., Li, Y. and Li, G. (2016) On Frechet autoregressive conditional duration models, Journal of Statistical Planning and Inference 175, 51-66.
- Lo, P.H., Li, W.K., Yu, P.L.H. and Li, G. (2016) On buffered threshold GARCH models, Statistica Sinica 26, 1555-1567.
- Li, G., Guan, B., Li, W.K. and Yu, P.L.H. (2015) Hysteretic autoregressive time series models, Biometrika 102, 717-723.
- Li, M., Li, W.K. and Li, G. (2015) A new hyperbolic GARCH model, Journal of Econometrics 189, 428-436.
- Li, G., Li, Y. and Tsai, C.-L. (2015) Quantile correlations and quantile autoregressive modeling, Journal of the American Statistical Association 110, 246-261.
- Liu, S. and Li, G. (2015) Varying-coefficient mean-covariance regression analysis for longitudinal data, Journal of Statistical Planning and Inference 160, 89-106.
- Wu, J. and Li, G. (2014) Moment-based tests for individual and time effects in panel data models, Journal of Econometrics 178, 569-581.
- Li, D., Li, G. and You, J. (2014) Significant variable selection and autoregressive order determination for time series partially linear models, Journal of Time Series Analysis 35, 478-490.
- Li, G., Leng, C. and Tsai, C.-L. (2014) A hybrid bootstrap approach to unit root tests, Journal of Time Series Analysis 35, 299-321.
- Li, M., Li, W.K. and Li, G. (2013) On mixture memory GARCH models, Journal of Time Series Analysis 34, 606-624.
- Kwan, W., Li, W.K. and Li, G. (2012) On the estimation and diagnostic checking of the ARFIMA–HYGARCH model, Computational Statistics and Data Analysis 56, 3632-3644.
- Li, G. and Li, W.K. (2011) Testing a linear time series model against its threshold extension, Biometrika 98, 243-250.
- Li, M., Li, G. and Li, W.K. (2011) Score tests for hyperbolic GARCH models, Journal of Business & Economic Statistics 29, 579-586.
- Kwan, W., Li, W.K. and Li, G. (2011) On the threshold hyperbolic GARCH models, Statistics and Its Interface 4, 159-166.
- Li, G. and Li, W.K. (2009) Least absolute deviation estimation for unit root processes with GARCH errors, Econometric Theory 25, 1208-1227.
- Li, G. and Li, W.K. (2008) Testing for threshold moving average with conditional heteroscedasticity, Statistica Sinica 18, 647-665.
- Li, G. and Li, W.K. (2008) Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity, Biometrika 95, 399-414.
- Wang, H., Li, G. and Jiang, G. (2007) Robust regression shrinkage and consistent variable selection via the LAD-LASSO, Journal of Business & Economic Statistics 25, 347-355.
- Wang, H., Li, G. and Tsai, C.-L. (2007) Regression coefficients and autoregressive order shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B 69, 63-78.
- Li, G. and Li, W.K. (2005) Diagnostic checking for time series models with conditional heteroscedasticity estimated by the least absolute deviation approach, Biometrika 92, 691-701.
-
Pan, J., Li, G. and Xie, Z. (2002) Stationary solution and parametric estimation for bilinear model driven by ARCH noises, Science in China, Series A 45, 1523-1537.
Machine Learning
- F Huang, K Lu, Y Cai, Z Qin, Y Fang, G Tian & G Li (2023) Encoding recurrence into transformers,
Proceedings of the 11th International Conference on Learning Representations (ICLR-23). (The acceptance rate is 31.8%, and this is an oral paper, i.e. notable-top-5%)
- Y Fang, Y Cai, J Chen, J Zhao, G Tian & G Li (2023) Cross-Layer Retrospective Retrieving via Layer Attention,
Proceedings of the 11th International Conference on Learning Representations (ICLR-23). (The acceptance rate is 31.8%)
- Zhao, J., Fang, Y. and Li, G. (2021). Recurrence along Depth: Deep Convolutional Neural Networks with Recurrent Layer Aggregation, Advances in Neural Information Processing Systems (NeurIPS 2021). Vol. 34, pp.10627-10640. (The acceptance rate is 26%.)
- Tu, W., Liu, P., Liu, Y., Kong, L., Li, G., Jiang, B., Yao, H., and Jui, S. (2021). Nonsmooth Low-rank Matrix Recovery: Methodology, Theory and Algorithm, Proceedings of the Future Technologies Conference (FTC 2021), Vol. 1, pp 848–862.
- Zhao, J., Huang, F., Lv, J., Duan, Y., Qin, Z., Li, G. and Tian, G. (2020) Do RNN and LSTM have Long Memory? Proceedings of the 37th International Conference on Machine Learning (ICML-20). Vol. 119, pp.11365-11375. (The acceptance rate is 21.8%.)
- Wang, D., Huang, F., Zhao, J., Li, G. and Tian, G. (2020) Compact autoregressive network, Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20). pp.6145-6152. (The acceptance rate is 20.6%)
- Liu, P., Tu, W., Zhao, J., Liu, Y., Kong, L., Li, G., Jiang, B., Tian, G., and Yao, H. (2019) M-estimation in low-rank matrix factorization: a general framework, Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM-19). pp. 568-577. (Regular paper with the acceptance rate of 9.08%).
-
Tu, W., Yang, D., Kong, L., Che, M., Shi, Q., Li, G. and Tian, G. (2019) Ensemble-based Ultrahigh-dimensional Variable Screening, Proceedings of the 28th International Joint Conferences on Artifical Intelligence (IJCAI-19), pp. 3613-3619. (The acceptance rate is 17.8%)
Application in Geography
- Zhang, D.D., Pei, Q., Lee, H.F., Jim, C.Y., Li, G., Zhang, M., Li, J., Wu, Z., Wang, L., Yue, R.P.H. and Zhang, S. (2020) Cultural dynamics of human resilience under climate change in Europe of past 2,500 years, Science of the Total Environment 744, 140842.
- Pei, Q., Li, G., Winterhalder, B.P. and Lowman, M. (2020) Regional patterns of pastoralist migrations under the push of reduced precipitation in imperial China, Global Ecology and Biogeography 29, 433-443.
- Pei, Q., Nowak, Z., Li, G., Xu, C., and Chan, W.K. (2019) The Strange Flight of the Peacock: Farmers’ atypical northwesterly migration from central China, 200BC-1400AD, Annals of the Association of American Geographers 109, 1583-1596. (The flagship journal of AAG)
- Pei, Q., Zhang, D.D., Li, G., Foret, P. and Lee, H.F. (2016) Temperature and precipitation effects on agrarian economy in late imperial China, Environmental Research Letters 11, 064008.
- Pei Q., Zhang D.D., Lee F. and Li G. (2016) Crop management as an agricultural adaptation to climate in early modern era: A comparative study of Eastern and Western Europe, Agriculture 6, 29.
- Pei, Q., Zhang, D.D., Li, G. and Lee, H.F. (2015) Climate change and the macroeconomic structure in pre-industrial Europe: new evidence from wavelet analysis, PLoS ONE 10(6), e0126480.
- Pei, Q., Zhang, D.D., Li, G., Winterhalder, B. and Lee, H.F. (2015) Epidemics in Ming and Qing China: impacts of changes of climate andeconomic well-being, Social Science & Medicine 136-137, 73-80.
- Pei, Q., Zhang, D.D., Lee, H.F. and Li, G. (2014) Climate change and macro-economic cycles in pre-industrial Europe, PLoS ONE 9(2), e88155.
-
Pei, Q., Zhang, D.D., Li, G. and Lee, H.F. (2013) Short and long term impacts of climate variations on the agrarian economy in pre-industrial Europe, Climate Research 56, 169-180.
Book Chapter and Invited Discussions
- Zheng, Y., Li, Y., Li, W.K. and Li, G. (2016) Diagnostic checking for Weibull autoregressive conditional duration models. In: Li, W.K., Stanford, D.A., Yu, H. (editors): Advances in Time Series Methods and Applications: the A. Ian McLeod Festschrift, 107-114, Springer-Verlag, New York.
- Yu, P.L.H. and Li, G. (2014) Discussion on the paper "Principal volatility component analysis", Journal of Business & Economic Statistics 32, 166-167.
- Li, W.K. and Li, G. (2009) Discussion on the paper "Model selection for generalized linear models with factor-augmented predictors", Applied Stochastic models in Business and Industry 25, 237-239.
- Li, W.K. and Li, G. (2009) Discussion on the paper "Analyzing short time series data from periodically fluctuating rodent populations by threshold models: A nearest block bootstrap approach", Science in China, Series A 52, 1109-1110.