




(1971). The idea was later systematically incorporated in the time series literature by Chan and

Tong (1986) under the name of a smooth threshold autoregressive (STAR) model, as an exten-

sion of the TAR model and the exponential autoregressive model of Ozaki (1980). The STAR

model was enthusiastically pursued by the econometricians; see, e.g., Luukkonen et al. (1988),

Teräsvirta (1994), van Dijk et al. (2002) and Teräsvirta et al. (2010), who changed smooth thresh-

old to smooth transition, whilst retaining the same acronym, STAR. However, in applications,

practitioners typically assume either a TAR model or a STAR model on prior and often arbitrary

grounds. Given the fundamentally different switching characteristics (discontinuous vs. smoothly

continuous) of the two models, leading to possibly different interpretations, it is clear that there

is a definite need for a statistical test to help us make an informed decision on the basis of our

data.

This paper aims to fill this long standing gap. It is also prompted by two of the wishes

expressed in Cox (1961, 1962), namely time series and continuous hypothesis vs. discontinuous

hypothesis. As far as we are aware, our paper represents the first attempt at testing for separate

families of hypotheses in nonlinear time series analysis. However, there is an interesting challenge:

although the STAR model includes the TAR model as a special case, it does so only in the form

of a limiting case with the switching becoming infinitely fast. This renders standard nested

tests impotent. In fact, experience in tests for linearity within TAR models (e.g. Chan and

Tong (1990)) shows that the standard likelihood ratio test statistic will follow a complicated

distribution, which is typically not a chi-squared distribution. In order to develop a test that

has sufficient power and is simple to use in practice, we have to adopt an alternative approach

to treat this non-standard problem. In this paper, we shall follow the approach of non-nested

tests initiated by Cox (1961, 1962). We shall develop non-nested tests for departure from a

STAR/TAR model in the direction of a TAR/STAR model, within the context of a separate

families of hypotheses. The separate families are defined by disallowing infinitely fast switching

in the STAR model. We show that the test statistic under a STAR model follows a chi-squared

distribution, asymptotically, and the one under a TAR model is expressed as a functional of a

chi-squared process. Numerical studies are carried out on both simulated and real data to assess

the performance of our procedure.

This paper is organized as follows. Section 2 presents the STAR and TAR models, and the

non-nested testing procedure. Section 3 derives the asymptotic distributions of the proposed

non-nested tests and the related algorithm. Section 4 presents a simulation study. Section 5
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analyzes two empirical examples. Section 6 gives the proofs of the theorems.

2 The models and the non-nested testing procedure

The time series {yt : t = 0,±1,±2, ...} is said to follow a STAR(p) model if it satisfies the equation

yt = X ′
t−1θ1 +X ′

t−1θ2G(qt−1, s, r) + εt, (2.1)

where Xt = (1, yt, ..., yt−p+1)
′, θi = (φi0, φi1, ..., φip)

′, i = 1, 2. qt ∈ Fp
t , the σ-field generated

by (yt, yt−1, ..., yt−p+1) and Ft is the σ-field generated by (yt, yt−1, ...), r is the threshold value

and s > 0 is the switching parameter. Here, {εt} is a sequence of independent and identically

distributed (i.i.d.) random variables with mean zero and variance 0 < σ2 < ∞, and G(qt−1, s, r)

is a smooth switching function; for example, the following logistic smooth switching function is a

popular choice

G(qt−1, s, r) =
1

1 + e−s(qt−1−r)
, (2.2)

and model (2.1) with logistic smooth switching function (2.2) is commonly called an LSTAR

model. The true values of the parameters are denoted by θi0, s0 and r0, respectively. A popular

nonlinear time series model is the TAR(p) model defined as

yt = X ′
t−1θ1 +X ′

t−1θ2I(qt−1 > r) + εt, (2.3)

where I(·) is the indicator function. Figure 1 plots I(x > 0) and G(x, s, 0) for different s with a

fixed threshold r = 0. This figure highlights the difficulty in distinguishing a TAR model from a

STAR model when s is large. To conform with the notion of separate families, we restrict s to

lie in a finite interval, namely s ∈ [s1, s2] with 0 < s1 < s2 < ∞. Similar restriction is assumed

for s in the general G(qt−1, s, r). Note that a STAR model has one more parameter (namely s)

than a TAR model of the same order.

Let θ = (θ′1, θ
′
2)

′ and λ = (θ′, s, r)′. We assume that θ ∈ Θ ⊂ R2p+2, r ∈ Γ ⊂ R and

λ ∈ Λ ⊂ R2p+4, where Θ, Γ and Λ are compact sets. We first introduce several assumptions as

follows.

Assumption 2.1. {yt} generated by (2.1) or by (2.3) is strictly stationary and ergodic.

For assumption 2.1 to hold, see the discussions in Chan and Tong (1986) for the STAR model

and Chan (1993) for the TAR model.
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Figure 1: I(x > 0) and G(x, s, 0).

Assumption 2.2. (i). εt and qt have bounded, continuous and positive densities on R and

Eε4t < ∞; (ii). The conditional density of Xt given qt = r is fX|q(x|r), which is also bounded,

continuous and positive on Rp+1 for all r ∈ Γ.

Assumption 2.2(i) is conventional for the noise εt and threshold variable qt, where the moment

condition Eε4 < ∞ conforms with condition 2 in Chan (1993). Assumption 2.2(ii) implies the

existence of the joint density of (X ′
t, qt), which is used to establish (6.4).

Assumption 2.3. (i). E(‖Xt‖2|qt = r) ≤ K < ∞ for all r ∈ Γ; (ii). E(‖Xt‖I(r1 < qt ≤
r2)|Ft−p) ≤ K℘t−p|r2 − r1|, where ℘t−p ∈ Ft−p independent of r1 and r2 with E℘t−p ≤ K < ∞
for any r1 ≤ r2 in Γ, and K > 0 is a constant independent of t and Γ.

In what follows, we use the notation K as a generic constant whose value can change. By

assumption 2.2(ii), assumption 2.3(i) is similar to assumption 1.4 in Hansen (2000), which is a

conditional moment condition for |Xt| given qt, while we only require finite second moment here.

Assumption 2.3(ii) is similar to condition (C3) in Chan (1990), while here we use conditional

expectation without specifying the form of qt. When qt−1 = yt−d for some 1 ≤ d ≤ p, by

assumption 2.2, it is not hard to verify assumption 2.3(ii). For example, if p = 2 and d = 2, then

Xt = (1, yt, yt−1)
′ and qt = yt−1; for the nontrivial term in assumption 2.3(ii) we have

E(|yt|I(r1 < yt−1 ≤ r2|Ft−2)
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≤ KE[(|εt|+ |εt−1|+ ψt−2)I(r1 − φt−2 < εt−1 ≤ r2 − φt−2)|Ft−2]

≤ Kκt−2E[I(r1 − φt−2 < εt−1 ≤ r2 − φt−2)|Ft−2]

= Kκt−2[Fε(r2 − φt−2)− Fε(r1 − φt−2)]

≤ Kκt−2|r2 − r1|,

where φt−2, ψt−2 and κt−2 are Ft−2-measurable functions of the autoregressors, Fε(·) is the

distribution of εt and the last line above is due to Taylor’s expansion and the boundedness of the

density function of εt by assumption 2.2. Define

εt(λ) = yt −X ′
t−1θ1 −X ′

t−1θ2G(qt−1, s, r)

and

εt(θ, r) = yt −X ′
t−1θ1 −X ′

t−1θ2I(qt−1 > r),

Denote by λ̂n the least squares estimator (LSE) of λ0 in model (2.1) and (θ̂n, r̂n) the LSE of

(θ0, r0) in model (2.3), namely

λ̂n = argmin
λ∈Λ

n
∑

t=1

ε2t (λ), (2.4)

(θ̂n, r̂n) = argmin
(θ,r)∈Θ×Γ

n
∑

t=1

ε2t (θ, r). (2.5)

We make two assumptions on λ̂n and (θ̂n, r̂n) defined as above.

Assumption 2.4. Under model (2.1),

√
n(λ̂n − λ0) = −Σ−1

1

1√
n

n
∑

t=1

∂εt(λ0)

∂λ
εt + op(1),

where Σ1 = E[∂εt(λ0)/∂λ∂εt(λ0)/∂λ
′].

For assumption 2.4 to hold, see the discussion in section 5.2 in van Dijk et al. (2002) on the

estimation of STAR model. For general conditions, we refer readers to Klimko and Nelson (1978),

Ling and McAleer (2010), among others. When G(qt−1, s, r) is the standard normal distribution

function, sufficient conditions are given in Chan and Tong (1986).

Assumption 2.5. Under model (2.3), r̂n − r0 = Op(1/n) and

√
n(θ̂n − θ0) = −Σ−1

2

1√
n

n
∑

t=1

∂εt(θ0, r0)

∂θ
εt + op(1),

where Σ2 = E[∂εt(θ0, r0)/∂θ∂εt(θ0, r0)/∂θ
′].
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For assumption 2.5 to hold, we refer to Chan (1993), where V-ergodicity for the time series

and discontinuity for the autoregressive function in model (2.3) are discussed.

In the spirit of Cox (1961, 1962), and following Davidson and MacKinnon (1981), MacKinnon

et al. (1983), and Bera and McAleer (1989), we can construct a comprehensive or an auxiliary

model given by the following linearly weighted competing function:

yt = X ′
t−1θ1 + (1− δ)X ′

t−1θ2G(qt−1, s, r) + δX ′
t−1θ2I(qt−1 > r) + εt. (2.6)

We shall consider testing the hypothesis

H0 : δ = 0 against H1 : δ = 1. (2.7)

Essentially, we test departure from a STAR model in the direction of a TAR model. Naturally,

we can and do also consider testing departure from a TAR model in the direction of a STAR

model. Under H0 and H1, model (2.6) reduces to model (2.1) and (2.3), respectively. Since model

(2.1) and model (2.3) are non-nested, (2.7) is called a non-nested hypothesis.

3 Asymptotic properties of the non-nested tests

We consider the (conditional) quasi-log-likelihood function of model (2.6) as follows.

L(δ, λ) = −1

2

n
∑

t=1

[yt −X ′
t−1θ1 − (1− δ)X ′

t−1θ2G(qt−1, s, r)− δX ′
t−1θ2I(qt−1 > r)]2.

Denote Dt(r, s) = G(qt−1, s, r) − I(qt−1 > r). Under H0, we obtain the score function and

information matrix as follows.

∂L(0, λ)

∂δ
=−

n
∑

t=1

{

[yt −X ′
t−1θ1 −X ′

t−1θ2G(qt−1, s, r)]

× [−X ′
t−1θ2I(qt−1 > r) +X ′

t−1θ2G(qt−1, s, r)]
}

=−
n
∑

t=1

εt(λ)X
′
t−1θ2Dt(r, s) (3.1)

and
∂2L(0, λ)

∂δ2
= −

n
∑

t=1

θ′2Xt−1X
′
t−1θ2D

2
t (r, s). (3.2)

The score based test statistic for testing H0 against H1 is defined as

T1n =[−∂
2L(0, λ̂n)

∂δ2
]−1[

∂L(0, λ̂n)

∂δ
]2, (3.3)

where λ̂n is defined in (2.4). We make one more set of assumptions on the smooth switching

function G(qt−1, s, r).
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Assumption 3.1.

(i). |G(qt−1, s, r)| ≤ 1;

(ii). |∂G(qt−1 , s, r)

∂s
| ≤ K(|qt−1|α1 + 1) and |∂G(qt−1, s, r)

∂r
| ≤ K(|qt−1|α2 + 1);

(iii). |∂
2G(qt−1, s, r)

∂2s
| ≤ K(|qt−1|α3 + 1) and |∂

2G(qt−1, s, r)

∂2r
| ≤ K(|qt−1|α4 + 1);

(iv). |∂
2G(qt−1, s, r)

∂r∂s
| ≤ K(|qt−1|α + 1),

where α1, α2, α3, α4, α ≥ 0 and K is a generic constant independent of t as before.

Assumption 3.1(i) is natural because G(qt−1, s, r) is a switching function between 0 to 1,

and assumption 3.1(ii)-(iii) are similar to A1-A2 in Francq et al. (2010). However, here we also

need the derivatives with respect to the threshold r. Assumptions 3.1(i)-(ii) are needed for the

existence of the limiting distributions in theorems 3.1-3.2, and assumptions 3.1(iii)-(iv) are used

to prove (6.12). Elementary calculations show that assumptions 3.1(i)-(iv) hold for the LSTAR

model with α1 = 1, α2 = 0, α3 = 2, α4 = 0 and α = 1.

Define

ω1 = E{θ′20Xt−1X
′
t−1θ20D

2
t (r0, s0)}

and

ω2 = ω1 − {EX ′
t−1θ20Dt(r0, s0)

∂εt(λ0)

∂λ′
}Σ−1

1 {EX ′
t−1θ20Dt(r0, s0)

∂εt(λ0)

∂λ
}

with their estimators

ω̂1n =
1

n

n
∑

t=1

{θ̂′2nXt−1X
′
t−1θ̂2nD

2
t (r̂n, ŝn)}

and

ω̂2n = ω̂1n − 1

n

n
∑

t=1

{X ′
t−1θ̂2nDt(r̂n, ŝn)

∂εt(λ̂n)

∂λ′
}Σ̂−1

1n

1

n

n
∑

t=1

{X ′
t−1θ̂2nDt(r̂n, ŝn)

∂εt(λ̂n)

∂λ
},

respectively, where Σ̂−1
1n =

∑n
t=1[∂εt(λ̂n)/∂λ∂εt(λ̂n)/∂λ

′]/n. Let σ̂20n = −2L(0, λ̂n)/n. It is not

hard to show that σ̂20n →p σ
2 as n→ ∞ under H0. Then we can state the following theorem.

Theorem 3.1. Under H0, if assumptions 2.1-2.4 and 3.1 hold, and E‖Xt−1‖2(|qt−1|2κ+1) <∞
with κ = max(α1, α2, α3, α4, α), then

S1n :=
T1n
σ̂20n

ω̂1n

ω̂2n
−→L χ

2
1,

as n→ ∞, where χ2
1 is a chi-squared distribution with one degree of freedom.
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Next, we discuss the case when H1 is true (i.e., δ = 1) and we fix s > 0 as a constant in (2.1).

Under H1 , we obtain the score function and information matrix as follows.

∂L(1, λ)

∂δ
=−

n
∑

t=1

{

[yt −X ′
t−1θ1 −X ′

t−1θ2I(qt−1 > r)]

× [−X ′
t−1θ2I(qt−1 > r) +X ′

t−1θ2G(qt−1, s, r)]
}

=−
n
∑

t=1

εt(θ, r)X
′
t−1θ2Dt(r, s) (3.4)

and
∂2L(1, λ)

∂δ2
= −

n
∑

t=1

θ′2Xt−1X
′
t−1θ2D

2
t (r, s). (3.5)

For a given s > 0, the score based test statistic for testing H1 against H0 is defined as

T2n(s) =[−∂
2L(1, θ̂n, s, r̂n)

∂δ2
]−1[

∂L(1, θ̂n, s, r̂n)

∂δ
]2, (3.6)

where θ̂n and r̂n are defined in (2.5). In (3.6), we have a nuisance parameter s, which is not

identified under H1. In the spirit of Francq et al. (2010), here we assume s ∈ [1/s̄, s̄] for an s̄ > 0

instead of [s1, s2]. Let D[1/s̄, s̄] be the Skorokhod space and =⇒ be the weak convergence. We

have the following theorem.

Theorem 3.2. Under H1, if assumptions 2.1-2.3, 2.5 and 3.1 hold, and E‖Xt−1‖2(|qt−1|2α1 +1)

<∞ , then,

(a)
1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=⇒ σZ(s) in D[1/s̄, s̄],

(b) sup
s∈[1/s̄,s̄]

| − 1

n

∂2L(1, θ̂n, s, r̂n)

∂δ2
− ω(s)| →p 0,

as n → ∞, where ω(s) = E{θ′20Xt−1X
′
t−1θ20D

2
t (r0, s)}, Z(s) is Gaussian process with EZ(s) =

0 and EZ(s)Z(τ) = E{θ′20Xt−1X
′
t−1θ20Dt(r0, s)Dt(r0, τ)} − {EX ′

t−1θ20Dt(r0, s)∂εt(θ0, r0)/∂θ
′}

Σ−1
2 {EX ′

t−1θ20Dt(r0, τ)∂εt(θ0, r0)/∂θ}.

Remark 3.1. With the weak convergence of part (a), since ω(s) and EZ(s)Z(τ) involve neither

derivatives of any order with respect to r nor second-order derivatives with respective to s, and

εt(θ, r) is linear in θ, the moment condition in Theorem 3.2 is slightly weaker than that in Theorem

3.1.

Following Hansen (1996) and Francq et al. (2010), among others, we use the supremum

statistic sups∈[1/s̄,s̄] T2n(s)/σ̂
2
1n as our test statistic, where σ̂21n = −2L(1, θ̂n, s, r̂n)/n, which does
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not depend on s. It is not hard to show that σ̂21n →p σ
2 as n → ∞ under H1. By Theorem 3.2

and the continuous mapping theorem, it follows that

S2n := sup
s∈[1/s̄,s̄]

T2n(s)

σ̂21n
−→L sup

s∈[1/s̄,s̄]

Z2(s)

ω(s)
,

which is the limiting distribution of our test statistic. Following Hansen (1996), Francq et al.

(2010) and using (6.19), (6.29) and Glivenko-Cantelli theorem, we can show that the following

algorithm can be used to simulate the quantiles of the distribution of sups∈[1/s̄,s̄]
Z2(s)
ω(s) conditional

on the data {y1, ..., yn}.

Algorithm 1. For i = 1, ..., N :

• (i) generate a N(0, 1) sample ε
(i)
1 , ..., ε

(i)
n ;

• (ii) set

Z(i)
n (s) =− 1√

n

n
∑

t=p+1

X ′
t−1θ̂2nDt(r̂n, s)ε

(i)
t + [

1

n3/2

n
∑

t=p+1

X ′
t−1θ̂2nDt(r̂n, s)

× ∂εt(θ̂n, r̂n)

∂θ′
]Σ̂−1

2n

n
∑

t=p+1

ε
(i)
t

∂εt(θ̂n, r̂n)

∂θ

and

ω̂n(s) =
1

n

n
∑

t=p+1

{θ̂′2nXt−1X
′
t−1θ̂2nD

2
t (r̂n, s)};

• (iii) compute sups∈[1/s̄,s̄]
[Zn

(i)(s)]2

ω̂n(s)
, denoted by S(i),

where Σ̂2n =
∑n

t=p+1[∂εt(θ̂n, r̂n)/∂θ∂εt(θ̂n, r̂n)/∂θ
′]/n. Conditional on {y1, ..., yn}, the sequence

{S(i), i = 1, ..., N} constitutes an independent and identically distributed sample of the random

variable sups∈[1/s̄,s̄]
Z2(s)
ω(s) . The (1 − α)-quantile of the distribution of sups∈[1/s̄,s̄]

Z2(s)
ω(s) can be

approximated by the empirical (1−α)-quantile of the artificial sample {S(i), i = 1, ..., N}, denoted
by cα. The rejection region of the test at the nominal level α is

{

sup
s∈[1/s̄,s̄]

Z2(s)

ω(s)
> cα

}

.

4 Simulation studies

First we examine the performance of the statistic S1n and S2n in finite samples through Monte

Carlo experiments. In the experiments, the sample sizes (n) are 400, 800, 1500, 3000 and 5000,
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Table 1: Testing H0 against H1.

n

α 400 800 1500 3000 5000

0.1 0.136 0.096 0.116 0.102 0.102

size s0 = 2 0.05 0.084 0.056 0.046 0.048 0.054

0.01 0.038 0.0124 0.006 0.010 0.008

0.1 0.100 0.108 0.098 0.102 0.084

size s0 = 5 0.05 0.054 0.064 0.046 0.050 0.036

0.01 0.008 0.010 0.006 0.008 0.014

0.1 0.112 0.108 0.102 0.104 0.100

size s0 = 10 0.05 0.046 0.044 0.072 0.048 0.044

0.01 0.010 0.010 0.018 0.006 0.008

0.1 0.516 0.592 0.664 0.830 0.912

power 0.05 0.460 0.526 0.610 0.792 0.900

0.01 0.378 0.390 0.482 0.702 0.844

and the number of replications is 500 for each case. The null hypothesis H0 is the STAR(1)

model with (θ′0, r0) = (−0.9,−0.4, 2, 0.9, 0.8) and s0 = 2, 5 and 10, respectively, and the smooth

switching function is given by (2.2) with qt−1 = yt−1. The alternative hypothesis H1 is a TAR(1)

model with qt−1 = yt−1 and parameters (θ′0, r0) as before. We set the significance levels at 0.01,

0.05 and 0.1; the corresponding critical values for χ2
1 are 6.635, 3.841 and 2.706, respectively. We

use the package tsDyn in R software and lstar function to fit the logistic STAR model when

testing H0 against From Table 1, it can be seen that the size becomes closer to the nominal level

in each case as the sample size increases. Table 1 also shows that the power increases with the

sample size. Generally speaking, we require a sample size in excess of 1500 for decent power. H1.

The results are summarized in Table 1.

When Testing H1 against H0, we set s̄ = 15, 30 and 45 in Theorem 3.2. For each s̄, under

H1, we consider the cases with s0 = 2, 5 and 10, respectively. We first simulate the critical values

by Algorithm 1 in section 3 with N = 10000. For each sample size n, conditional on one data set

we simulate the critical values cα with α = 0.1, 0.05 and 0.01. Table 2 summarizes the results

when s̄ = 15. Since the results for s̄ = 30 and 45 are similar, they are not reported here. From

Table 2, we can see that at each level, the critical values for the different sample sizes are very

close to one another. As a result, we shall adopt their average at each level as the critical value
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Table 2: Simulated critical values cα when testing H1 against H0 with s̄ = 15.

n

data s0 α 400 800 1500 3000 5000 average

0.1 1.84 1.74 1.82 1.75 1.78 1.786

TAR 0.05 2.62 2.49 2.58 2.47 2.53 2.538

0.01 4.53 4.25 4.60 4.75 4.44 4.514

0.1 1.39 1.41 1.47 1.32 1.46 1.410

LSTAR s0 = 2 0.05 2.00 2.03 2.09 1.89 2.08 2.058

0.01 3.55 3.59 3.60 3.41 3.83 3.596

0.1 1.65 1.70 1.68 1.72 1.70 1.690

LSTAR s0 = 5 0.05 2.32 2.48 2.42 2.52 2.48 2.444

0.01 4.05 4.32 4.14 4.65 4.36 4.304

0.1 1.80 1.73 1.78 1.81 1.76 1.776

LSTAR s0 = 10 0.05 2.59 2.48 2.54 2.57 2.58 2.552

0.01 4.55 4.51 4.49 4.48 4.33 4.472

at that level. Strictly speaking, we should simulate the critical value for each data set and for

each sample size n when verifying the efficacy of our test. However, in view of the closeness of

the critical values for different sample sizes, we suggest that taking their average as the critical

value is a practical way to apply our test. Thus, Table 3 summarizes the simulated critical values

with s̄ = 15, 30 and 45, respectively. For each s̄, we choose s0 = 1 , 2, 5, 10 and 15 respectively

in the LSTAR model.

Based on the critical values in Table 3, we use 500 replications in this experiment for each

case and Tables 4–6 report the sizes and powers when testing H1 against H0 for s̄ = 15, 30 and

45, respectively. From Tables 4–6, we can see that the sizes are very close to their nominal levels.

We can also see that the power increases with the sample size. For each s̄, the power is initially

lower when s0 = 1, 2 than that when s0 = 5, 10 and 15, but when the sample size is larger than

1500, all the powers are quite high and even close to 1 when n ≥ 3000. It is also noted that, when

s̄ becomes larger, the power seems to decrease slightly at each corresponding slot. Moreover,

Tables 4–6 show lower power at s0 = 1 and 2 than at 5, 10 and 15, The explanation for this and

the above observation rests with s̃n := {s : sups∈[1/s̄,s̄] T2n(s)/σ̂21n}, which, as an estimator of s0,

depends on s0, n and s̄ in a fairly complex manner. Table 7 shows the relation when n = 400. It

shows the mean of 500 estimators for each s0. In view of Figure 1, a larger estimator s̃n will give

11



Table 3: Simulated critical values cα when testing H1 against H0.

data s̄ s0 α = 0.1 α = 0.05 α = 0.01

TAR 15 1.786 2.538 4.514

TAR 30 2.153 3.128 5.320

TAR 45 2.370 3.374 6.052

LSTAR 15 1 1.166 1.723 3.103

LSTAR 15 2 1.410 2.058 3.596

LSTAR 15 5 1.690 2.444 4.304

LSTAR 15 10 1.776 2.552 4.472

LSTAR 15 15 1.744 2.495 4.410

LSTAR 30 1 1.783 2.597 4.585

LSTAR 30 2 1.870 2.659 4.693

LSTAR 30 5 2.076 2.941 5.171

LSTAR 30 10 2.181 3.092 5.415

LSTAR 30 15 2.177 3.110 5.397

LSTAR 45 1 2.024 2.886 4.995

LSTAR 45 2 2.224 3.177 5.489

LSTAR 45 5 2.362 3.333 5.760

LSTAR 45 10 2.347 3.306 5.745

LSTAR 45 15 2.286 3.248 5.577
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Table 4: Testing H1 against H0 when s̄ = 15.

n

data s0 α 400 800 1500 3000 5000

0.1 0.170 0.154 0.156 0.146 0.160

size TAR 0.05 0.070 0.072 0.082 0.080 0.086

0.01 0.014 0.020 0.020 0.018 0.012

0.1 0.582 0.704 0.748 0.904 0.982

power LSTAR s0 = 1 0.05 0.442 0.532 0.640 0.832 0.950

0.01 0.198 0.272 0.378 0.638 0.864

0.1 0.382 0.604 0.776 0.886 0.962

power LSTAR s0 = 2 0.05 0.224 0.432 0.642 0.822 0.930

0.01 0.070 0.170 0.364 0.606 0.820

0.1 0.956 1 1 1 1

power LSTAR s0 = 5 0.05 0.916 1 1 1 1

0.01 0.720 0.996 1 1 1

0.1 0.910 0.996 1 1 1

power LSTAR s0 = 10 0.05 0.856 0.994 1 1 1

0.01 0.622 0.970 1 1 1

0.1 0.786 0.990 1 1 1

power LSTAR s0 = 15 0.05 0.690 0.976 1 1 1

0.01 0.442 0.926 1 1 1
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Table 5: Testing H1 against H0 when s̄ = 30.

n

data s0 α 400 800 1500 3000 5000

0.1 0.138 0.160 0.180 0.118 0.150

size TAR 0.05 0.064 0.078 0.100 0.060 0.080

0.01 0.012 0.010 0.014 0.008 0.016

0.1 0.584 0.664 0.752 0.892 0.962

power LSTAR s0 = 1 0.05 0.402 0.500 0.622 0.804 0.934

0.01 0.146 0.198 0.324 0.552 0.784

0.1 0.390 0.520 0.668 0.774 0.864

power LSTAR s0 = 2 0.05 0.220 0.378 0.552 0.672 0.768

0.01 0.060 0.126 0.270 0.444 0.578

0.1 0.962 1 1 1 1

power LSTAR s0 = 5 0.05 0.888 0.998 1 1 1

0.01 0.640 0.996 1 1 1

0.1 0.868 0.998 1 1 1

power LSTAR s0 = 10 0.05 0.802 0.996 1 1 1

0.01 0.534 0.956 1 1 1

0.1 0.786 0.980 1 1 1

power LSTAR s0 = 15 0.05 0.638 0.952 1 1 1

0.01 0.342 0.842 1 1 1
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Table 6: Testing H1 against H0 when s̄ = 45.

n

data s0 α 400 800 1500 3000 5000

0.1 0.152 0.162 0.142 0.164 0.168

size TAR 0.05 0.066 0.070 0.080 0.086 0.082

0.01 0.020 0.010 0.012 0.014 0.018

0.1 0.588 0.692 0.816 0.914 0.960

power LSTAR s0 = 1 0.05 0.420 0.492 0.676 0.818 0.920

0.01 0.148 0.182 0.354 0.538 0.778

0.1 0.330 0.496 0.628 0.746 0.778

power LSTAR s0 = 2 0.05 0.182 0.322 0.470 0.600 0.668

0.01 0.034 0.096 0.238 0.380 0.442

0.1 0.930 1 1 1 1

power LSTAR s0 = 5 0.05 0.832 1 1 1 1

0.01 0.518 0.986 1 1 1

0.1 0.842 0.996 1 1 1

power LSTAR s0 = 10 0.05 0.728 0.994 1 1 1

0.01 0.410 0.930 1 1 1

0.1 0.716 0.978 1 1 1

power LSTAR s0 = 15 0.05 0.564 0.962 1 1 1

0.01 0.284 0.826 0.998 1 1

Table 7: The realized estimator s̃n for different true value s0 under H1 when n = 400.

s0

s̄ 0.5 1 2 5 8 10 15 20

15 13.37 13.23 9.00 6.54 8.65 9.73 11.38 12.06

30 24.13 24.07 20.69 6.75 9.23 10.66 13.83 16.5

45 32.64 32.83 31.56 7.83 9.38 10.94 15.10 18.05

100 56.65 55.57 58.6 20.04 16.74 16.99 21.29 25.72
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rise to less difference between the smooth function and the indicator function and hence a lower

power, and a smaller one will give higher power. The result in Table 7 conforms to the ones we

obtained in Tables 4–6.

5 Real data examples

In this section, we re-visit two real data sets to illustrate our tests. Now, Teräsvirta et al. (2010)

fitted (on p. 390) an LSTAR model to the Wolf’s sunspot numbers (1700 to 1979) and van Dijk

et al. (2002) fitted a similar model to the U.S. unemployment rate. Later, Ekner and Nejstgaard

(2013) examined the profile likelihoods of the switching parameter of the above two examples,

after an appropriate reparametrization.

The first data set consists of the Wolf’s annual sunspot numbers, which are available at the

Belgian web page of Solar Influences Data Analysis Center.∗. Teräsvirta et al. (2010) fitted an

LSTAR model to the sunspot numbers for the period 1700-1979. Following Ghaddar and Tong

(1981), they used the square-root transformed sunspot numbers, namely yt = 2{(1 + zt)
1/2 − 1},

where zt is the original sunspot number. Ekner and Nejstgaard (2013) reproduced the LSTAR

model as well as fitted a TAR model as follows (standard deviations in parentheses):†

H0 : yt = 1.46yt−1 − 0.76yt−2 + 0.17yt−7 + 0.11yt−9

(0.08) (0.13) (0.05) (0.04)
+(2.65 − 0.54yt−1 + 0.75yt−2 − 0.47yt−3

(0, 85) (0.13) (0.18) (0.11)
+0.32yt−4 − 0.26yt−5 − 0.24yt−8 + 0.17yt−10)Ĝ(yt−2, 5.46/σ̂yt−2 , 7.88) (5.1)

(0.11) (0.07) (0.05) (0.06)

and

H1 : yt = 1.43yt−1 − 0.77yt−2 + 0.17yt−7 + 0.12yt−9

(0.08) (0.14) (0.05) (0.05)
+(2.69 − 0.45yt−1 + 0.69yt−2 − 0.48yt−3

(0, 70) (0.11) (0.18) (0.11)
+0.36yt−4 − 0.27yt−5 − 0.21yt−8 + 0.14yt−10)I(yt−2 > 6.39), (5.2)

(0.11) (0.07) (0.05) (0.05)

∗http://www.sidc.oma.be/sunspot-data/
†There are very minor differences between three of the estimated parameters, most probably due to rounding

from two decimal places to one in Teräsvirta et al. (2010).
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Table 8: Testing (5.1) against (5.2) (NR=not rejected)

α = 0.1 α = 0.05 α = 0.01 p-value

Decision NR NR NR 0.764

Table 9: Testing (5.2) against (5.1).

s̄ α = 0.1 α = 0.05 α = 0.01 p-value

15 NR NR NR 0.964

Decision 30 NR NR NR 0.958

45 NR NR NR 0.962

where σ̂yt−2 is the standard deviation of qt−1 = yt−2, σ̂
2
0n = 3.414 and σ̂21n = 3.410. From the data,

we obtain σ̂yt−2 = 5.57, giving ŝn = 0.98. When testing H0 (i.e., (5.1)) against H1 (i.e., (5.2)), the

results are summarized in Table 8. From Table 8, we can see that we do not reject (5.1) at each

of the three levels and the p−value is 0.764. Then we test H1 against H0 and we choose s̄ = 15,

30, and 45, respectively. The results are summarized in Table 9. From Table 9, we can see that

we again do not reject (5.2) at each of the three levels and for each s̄, and the p−values are 0.964,

0.958 and 0.962, respectively. Tables 8 and 9 suggest that given a sample size of only 280 and

the fairly large number of parameters (14 for (5.1) and 13 for (5.2)), neither test seems to enjoy

sufficient power to detect departure from one model in the direction of the other. However, the

difference between the near-unity p−values in Table 9 as against the p−value of 0.764 in Table

8 suggests that, if properly reformulated as Bayesian posterior odds, it can lend credence to the

conclusion of Ekner and Nejstgaard (2013), which finds from their profile likelihood analysis that

‘the global maximum is actually the TAR model’ whereas the STAR model adopted by Teräsvirta

et al. (2010) is only a local maximum.

In the second example, we re-examine the monthly seasonally unadjusted unemployment rate

for U.S. males aged 20 and over for the period 1968:6-1989:12, to which van Dijk et al. (2002)

fitted an LSTAR model.‡ Ekner and Nejstgaard (2013) re-examined the above LSTAR model as

well as fitted a TAR model as follows (standard deviations in parentheses).

‡The series is constructed from data on the unemployment level and labor force for the particular sub-

population. These two series are published together with Gauss programs used to estimate their model at

http://swopec.hhs.se/hastef/abs/hastef0380.htm.
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H0 : ∆yt = 0.479 + 0.645D1,t − 0.342D2,t − 0.68D3,t − 0.725D4,t − 0.649D5,t

(0.07) (0.07) (0.10) (0.09) (0.11) (0.10)
−0.317D6,t − 0.410D7,t − 0.501D8,t − 0.554D9,t − 0.306D10,t

(0.09) (0.09) (0.09) (0.09) (0.07)
+[−0.040yt−1 − 0.146∆yt−1 − 0.101∆yt−6 + 0.097∆yt−8 − 0.123∆yt−10

(0.01) (0.08) (0.06) (0.06) (0.06)
+0.129∆yt−13 − 0.103∆yt−15]× [1− Ĝ(∆12yt−1, 23.15/σ̂∆12yt−1 , 0.274)]

(0.07) (0.06)
+[−0.011yt−1 + 0.225∆yt−1 + 0.307∆yt−2 − 0.119∆yt−7 − 0.155∆yt−13

(0.01) (0.08) (0.08) (0.07) (0.09)
−0.215∆yt−14 − 0.235∆yt−15]× Ĝ(∆12yt−1, 23.15/σ̂∆12yt−1 , 0.274)

(0.09) (0.09) (5.3)

and

H1 : ∆yt = 0.473 + 0.644D1,t − 0.343D2,t − 0.675D3,t − 0.721D4,t − 0.641D5,t

(0.07) (0.07) (0.10) (0.09) (0.11) (0.10)
−0.308D6,t − 0.410D7,t − 0.505D8,t − 0.546D9,t − 0.295D10,t

(0.09) (0.09) (0.08) (0.09) (0.07)
+[−0.040yt−1 − 0.14∆yt−1 − 0.094∆yt−6 + 0.092∆yt−8 − 0.116∆yt−10

(0.01) (0.08) (0.06) (0.06) (0.06)
+0.136∆yt−13 − 0.106∆yt−15]× I(∆12yt−1 ≤ 0.268)

(0.07) (0.06)
+[−0.012yt−1 + 0.227∆yt−1 + 0.307∆yt−2 − 0.094∆yt−7 − 0.146∆yt−13

(0.01) (0.08) (0.08) (0.07) (0.09)
−0.211∆yt−14 − 0.216∆yt−15]× I(∆12yt−1 > 0.268)

(0.09) (0.09) (5.4)

where ∆yt = yt− yt−1, ∆12yt = yt− yt−12, σ̂
2
0n = 0.03407 and σ̂21n = 0.03412, and Di,t is monthly

dummy variable where Di,t = 1 if observation t corresponds to month i and Di,t = 0 otherwise.

From the data, we obtain σ̂∆12yt−1 = 1.35, giving ŝn = 17.15. The results of testing H0 (i.e., (5.3))

against H1 (i.e., (5.4)) are summarized in Table 10. From Table 10, we can see that we reject

(5.3) at 0.1 significance level and do not reject it at the 0.05 and 0.01 levels, and the p−value is

0.075. Then we test H1 against H0 and choose s̄ = 15, 30 and 45, respectively. The results are

summarized in Table 11. From Table 11, we can see that we do not reject (5.4) at any of the

three levels for each s̄, and the p−value is 0.99 for each s̄. Overall, the results tend to suggest

that a TAR model is more plausible than a STAR model. The same conclusion was drawn by

Ekner and Nejstgaard (2013), who found that for the STAR model, the profile likelihood of the

s parameter is rather flat and the maximum occurs at a rather large value of s; they concluded

that ‘a large and imprecise estimate of s implies that the LSTAR model is effectively a TAR
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Table 10: Testing (6.3) against (6.4). (NR=not rejected)

α = 0.1 α = 0.05 α = 0.01 p-value

Decision rejected NR NR 0.075

Table 11: Testing (6.4) against (6.3).

s̄ α = 0.1 α = 0.05 α = 0.01 p-value

15 NR NR NR 0.99

Decision 30 NR NR NR 0.99

45 NR NR NR 0.99

model.’ However, the very large number of parameters for both models tends to suggest some

model over-parametrization.

6 Proofs of Theorems 3.1-3.2

To prove Theorem 3.1, we need the following basic lemma.

Lemma 6.1. {Xt} is a strictly stationary and ergodic process, f(Xt, θ) is a measurable function

with respect to Xt and θ ∈ Θ, which is a compact set in Rd for some integer d > 0.

(i) If E supθ∈Θ |f(Xt, θ)| <∞ and Ef(Xt, θ) is continuous in θ, then, for any ǫ > 0, there exists

an η > 0 such that

lim
n→∞

P ( sup
‖θ−θ0‖≤η

1

n
|

n
∑

t=1

[f(Xt, θ)− f(Xt, θ0)]| ≥ ǫ) = 0; (6.1)

(ii) If f(Xt, θ) satisfies assumption 2.3 with ‖Xt‖ and Γ replaced by |f(Xt, θ)| and [0, M√
n
] for any

θ ∈ Θ and M > 0, respectively, and qt ∈ Fp
t , which has bounded, continuous and positive density

fq(x) on R, then, for any ǫ > 0 and θ0 ∈ Θ,

lim
n→∞

P ( sup
0≤r≤ M√

n

1√
n
|

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤ r)εt| ≥ ǫ) = 0, (6.2)

where {εt} is an i.i.d. sequence independent of Ft with mean zero and finite variance.

Proof. (i). Let

Ht(η) = sup
‖θ−θ0‖≤η

|f(Xt, θ)− f(Xt, θ0)|.
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Since E supθ∈Θ |f(Xt, θ)| < ∞ and Ef(Xt, θ) is continuous in θ, for any ǫ > 0, there exists an

η > 0 small enough, such that EHt(η) < ǫ/2. As Ht(η) is strictly stationary and ergodic, by

ergodic theorem, we have

lim
n→∞

P (
1

n

n
∑

t=1

Ht(η) ≥ ǫ) ≤ lim
n→∞

P (
1

n
|

n
∑

t=1

[Ht(η)− EHt(η)]| ≥
ǫ

2
) = 0.

Thus, (6.1) holds.

(ii). As the interval [0,M ] is compact, for any small δ > 0, there is a finite integer N > 0 such

that 0 =M0 ≤M1 ≤ ... ≤MN =M with |Mi −Mi−1| ≤ δ, i = 1, ..., N . Then,

P ( sup
0≤r≤ M√

n

1√
n
|

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤ r)εt| ≥ ǫ)

≤P ( sup
1≤i≤N

sup
Mi−1√

n
≤r≤Mi√

n

1√
n
|

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤ r)εt| ≥ ǫ)

≤P ( sup
1≤i≤N

sup
Mi−1√

n
≤r≤Mi√

n

1√
n
|

n
∑

t=1

f(Xt, θ0)I(
Mi−1√
n

< qt ≤ r)εt| ≥ ǫ/2)

+

N
∑

i=1

P (
1√
n
|

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt| ≥ ǫ/2)

≤
{

N
∑

i=1

P

(

1√
n

n
∑

t=1

[

|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−1)

]

≥ ǫ

2(p + 1)

)

+ · · ·

+
N
∑

i=1

P

(

1√
n

n
∑

t=1

[

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−p+1)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−p)

]

≥ ǫ

2(p+ 1)

)}

+ P ( sup
1≤i≤N

1√
n

n
∑

t=1

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−p) ≥

ǫ

2(p+ 1)
)

+

N
∑

i=1

P (
1√
n
|

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt| ≥ ǫ/2)

,Π1n +Π2n +Π3n. (6.3)

For any random variable Z, if the joint density of (Z, qt) exists, we have

d

dr
E[ZI(qt ≤ r)] = E[Z|qt = r]fq(r),

then, for any r1, r2 ∈ Γ with r1 < r2, by Taylor’s expansion,

|E[ZI(r1 < qr ≤ r2)]| = |E[Z|qt = r∗]fq(r
∗)| |r2 − r1|, (6.4)
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where r∗ lies between r1 and r2.

By (6.4) and assumption 2.2-2.3, we have the following three inequalities in order,

E

(

1√
n

n
∑

t=1

[

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−j)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−j−1)

])2

≤2E|f(Xt, θ0)εt|2I(
Mi−1√
n

< qt ≤
Mi√
n
)

≤K δ√
n
, (6.5)

E[ sup
1≤i≤N

1√
n

n
∑

t=1

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n
)|Ft−p)]

=E[ sup
1≤i≤N

1√
n

n
∑

t=1

℘t−p
Mi −Mi−1√

n
]E|εt|

≤δ{ 1
n

n
∑

t=1

E[℘t−p]}E|εt|

≤Kδ, (6.6)

and

E(
1√
n

n
∑

t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt)
2

=Ef(Xt, θ0)
2ε2t I(0 < qt ≤

Mi−1√
n

)

≤KMi−1√
n
, (6.7)

where j = 0, 1, ..., p − 1, ℘t−p is defined in assumption 2.2 and K > 0 is a generic constant

independent of t.

By Markov inequality and (6.5)-(6.7), we have

Π1n +Π2n +Π3n ≤
N
∑

i=1

Kpδ√
n[ǫ/(2(p + 1))]2

+
Kδ

[ǫ/(2(p + 1))]
+

N
∑

i=1

Mi−1√
n(ǫ/2)2

→ 0, (6.8)

as n→ ∞ and δ → 0. Then, (6.2) follows from (6.3) and (6.8). �

Proof of Theorem 3.1. Under H0, by Taylor’s expansion, we have

εt(λ̂n) = εt(λ0) +
∂εt(λnt)

∂λ
(λ̂n − λ0)
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= εt +
1√
n

∂εt(λnt)

∂λ′
√
n(λ̂n − λ0), (6.9)

where λnt lies between λ̂n and λ0 for each t. Then, it follows that

1√
n

∂L(0, λ̂n)

∂δ
=− 1√

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)εt

− 1

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)

∂εt(λnt)

∂λ′
√
n(λ̂n − λ0)

=− 1√
n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)εt

− 1

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)

∂εt(λ̂n)

∂λ′
√
n(λ̂n − λ0) +Rn, (6.10)

where

Rn =
1

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)(

∂εt(λ̂n)

∂λ′
− ∂εt(λnt)

∂λ′
)
√
n(λ̂n − λ0)

=
1

n3/2

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, ŝn)

√
n(λ̂n − λnt)

′∂
2εt(λ

∗
nt)

∂λ∂λ′
√
n(λ̂n − λ0), (6.11)

where λ∗nt lies between λ̂n and λnt for each t. By assumptions 2.1-2.4 and the definition of λnt

in (6.9),
√
n(λ̂n − λ0) = Op(1), supt≤n

√
n|λ̂n − λnt| ≤

√
n|λ̂n − λ0| = Op(1). For any matrix

or vector A = (aij), we introduce the notation |A| = (|aij |) in this proof. Then, by assumption

3.1(iii)-(iv),

|Rn| ≤
√
n|(λ̂n − λ0)

′| 1

n3/2

n
∑

t=1

|X ′
t−1θ̂2nDt(r̂n, ŝn)||

∂2εt(λ
∗
nt)

∂λ∂λ′
||
√
n(λ̂n − λ0)|

≤
√
n|(λ̂n − λ0)

′| K
n3/2

n
∑

t=1

|X ′
t−1θ̂2nDt(r̂n, ŝn)||M(Xt−1, qt−1)||

√
n(λ̂n − λ0)|,

where M(Xt−1, qt−1) is defined as

M(Xt−1, qt−1) =





0 0

0 P (Xt−1, qt−1)





(2p+4)×(2p+4)

,

where

P (Xt−1, qt−1) =











0 |Xt−1||qt−1|α1 |Xt−1||qt−1|α2

|X ′
t−1||qt−1|α1 ‖Xt−1‖|qt−1|α3 ‖Xt−1‖|qt−1|α

|X ′
t−1||qt−1|α1 ‖Xt−1‖|qt−1|α ‖Xt−1‖|qt−1|α4











(p+3)×(p+3)

.
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By assumption 2.4 and Lemma 6.1(i) it is not hard to show that

1

n3/2

n
∑

t=1

|X ′
t−1θ̂2nDt(r̂n, ŝn)||M(Xt−1, qt−1)| = op(1).

Thus,

Rn = op(1). (6.12)

Now, we look at the first term on the right-hand side of (6.10). Let ξ = (θ′2, s, r)
′ and gt(ξ) =

X ′
t−1θ2G(qt−1, s, r), by Taylor’s expansion, assumption 2.4 and Lemma 6.1(i), we can show that,

for some ξ∗n lying between ξ̂n and ξ0,

1√
n

n
∑

t=1

gt(ξ̂n)εt =
1√
n

n
∑

t=1

gt(ξ0)εt + [
1

n

n
∑

t=1

∂gt(ξ
∗
n)

∂ξ′
εt]

√
n(ξ̂n − ξ0)

=
1√
n

n
∑

t=1

gt(ξ0)εt + op(1). (6.13)

and

1√
n

n
∑

t=1

X ′
t−1θ̂2nI(qt−1 > r̂n)εt =

1√
n

n
∑

t=1

X ′
t−1θ20I(qt−1 > r̂n)εt

+ [
1

n

n
∑

t=1

X ′
t−1I(qt−1 > r̂n)εt]

√
n(θ̂2n − θ0)

=
1√
n

n
∑

t=1

X ′
t−1θ20I(qt−1 > r̂n)εt + op(1). (6.14)

By Lemma 6.1(ii) and assumption 2.4, we can also show that

1√
n

n
∑

t=1

X ′
t−1θ20I(qt−1 > r̂n)εt =

1√
n

n
∑

t=1

X ′
t−1θ20I(qt−1 > r0)εt + op(1). (6.15)

By (6.10), (6.12)-(6.15), assumption 2.4 and Lemma 6.1(i), it follows that

1√
n

∂L(0, λ̂n)

∂δ
=− 1√

n

n
∑

t=1

X ′
t−1θ20Dt(r0, s0)εt

+ [
1

n

n
∑

t=1

X ′
t−1θ20Dt(r0, s0)

∂εt(λ0)

∂λ′
]Σ−1

1

1√
n

n
∑

t=1

∂εt(λ0)

∂λ
εt + op(1). (6.16)

By ergodic theorem and central limit theorem, we have

1√
n

∂L(0, λ̂n)

∂δ
−→L N(0, σ2ω2), (6.17)

Assumption 3.1 and the condition E‖Xt−1‖2(|qt−1|2κ + 1) < ∞ can guarantee the existence of

ω2. By (3.2), assumption 2.4, Lemma 6.1(i) and ergodic theorem,

− 1

n

∂2L(0, λ̂n)

∂δ2
→p E{θ′20Xt−1X

′
t−1θ20D

2
t (r0, s0)} = ω1. (6.18)
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By (3.3), (6.17), (6.18), σ̂20n →p σ
2, ω̂1n →p ω1, ω̂2n →p ω2 and Slusky theorem, we have

T1n
σ̂20n

ω̂1n

ω̂2n
−→L χ

2
1,

as n→ ∞. This completes the proof. �

Proof of Theorem 3.2. By a similar argument as above, for a fixed s ∈ [1/s̄, s̄], we replace

εt(λ̂n) with εt(θ̂n, r̂n) and take the derivatives with respect to θ in (6.9), ∂εt(θ, r̂n)/∂θ
′ does not

depend on θ anymore. Denote Vt(r) = ∂εt(θ, r)/∂θ. By assumption 2.5, r̂n− r0 = Op(1/n), then,

by (6.4) and the uniform boundedness of Dt(r, s), it is not hard to show that,

sup
s∈[1/s̄,s̄]

| 1√
n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, s)[εt(θ0, r̂n)− εt]| = op(1).

Then, for each s ∈ [1/s̄, s̄], it follows that

1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=− 1√

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, s)εt

− [
1

n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, s)Vt(r̂n)

′]
√
n(θ̂n − θ0) + op(1), (6.19)

where op(1) holds uniformly in s ∈ [1/s̄, s̄], as n→ ∞.

Now, we look at the first term on the right-hand side of (6.19). Let ζ = (θ′2, r)
′ and gt(ζ, s) =

X ′
t−1θ2Gt(qt−1, s, r). Then,

1√
n

n
∑

t=1

X ′
t−1θ̂2nG(qt−1, s, r̂n)εt =

1√
n

n
∑

t=1

gt(ζ0, s)εt + [
1

n

n
∑

t=1

∂gt(ζ
∗
n, s)

∂ζ ′
εt]

√
n(ζ̂n − ζ0) (6.20)

where ζ∗n lies between ζ̂n and ζ0, and

∂gt(ζ
∗
n, s)

∂ζ ′
= (X ′

t−1G(qt−1, s, r
∗
n),X

′
t−1θ

∗
2n

∂G(qt−1, s, r
∗
n)

∂r
).

By assumption 3.1, we can show that for any s, τ ∈ [1/s̄, s̄],

|∂gt(ζ
∗
n, s)

∂ζ ′
− ∂gt(ζ

∗
n, τ)

∂ζ ′
| ≤K(|X ′

t−1|(|qt−1|α1 + 1), ‖Xt−1‖(|qt−1|α4 + 1))|s − τ |

:=Jt|s− τ |, (6.21)

where Jt is strictly stationary and ergodic. Denote ∆(η) = {(θ2, r) : ‖θ2 − θ0‖+ |r− r0| ≤ η}. By
(6.21), a standard piecewise argument on s ∈ [1/s̄, s̄] and Lemma 6.1(i), we can show that

sup
s∈[1/s̄,s̄]

sup
∆(η)

| 1
n

n
∑

t=1

∂gt(ζ, s)

∂ζ ′
εt −

1

n

n
∑

t=1

∂gt(ζ0, s)

∂ζ ′
εt| = op(1), (6.22)
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as η small enough. By ergodic theorem, (6.21) and a standard piecewise argument as Lemma A.1

in Francq et al. (2010)

sup
s∈[1/s̄,s̄]

| 1
n

n
∑

t=1

∂gt(ζ0, s)

∂ζ ′
εt| = op(1). (6.23)

By assumption 2.5, (6.22) and (6.23), it follows that

sup
s∈[1/s̄,s̄]

| 1
n

n
∑

t=1

∂gt(ζ
∗
n, s)

∂ζ ′
εt| = op(1). (6.24)

By assumption 2.5, (6.4) and a similar argument as (6.14), we have

1√
n

n
∑

t=1

X ′
t−1θ̂2nI(qt−1 > r̂n)εt =

1√
n

n
∑

t=1

X ′
t−1θ20I(qt−1 > r0)εt + op(1). (6.25)

By (6.20) and (6.24)-(6.25), it follows that

1√
n

n
∑

t=1

X ′
t−1θ̂2nDt(r̂n, s)εt =

1√
n

n
∑

t=1

X ′
t−1θ20Dt(r0, s)εt + op(1), (6.26)

where op(1) holds uniformly in s ∈ [1/s̄, s̄].

We then consider the second term on the right-hand side of (6.19). Let Bt(θ2, r, s) =

X ′
t−1θ2Dt(r, s)V (r)′. By assumption 3.1, for any s, τ ∈ [1/s̄, s̄], and each θ2 and r, by Tay-

lor’s expansion, we have

|Bt(θ2, r, s) −Bt(θ2, r, τ)|2 ≤ K|X ′
t−1θ2Vt(r)

′|(|qt−1|α1 + 1)|s − τ | = Qt|s− τ |. (6.27)

where Qt is strictly stationary and ergodic.

By Lemma 6.1(i), a standard piecewise argument on s ∈ [1/s̄, s̄] and (6.27), we can show that

for any ǫ > 0, there exits an η > 0 such that

lim
n→∞

P ( sup
s∈[1/s̄,s̄]

sup
∆(η)

1

n
|

n
∑

t=1

[Bt(θ2, r, s)−Bt(θ20, r0, s)]| ≥ ǫ) = 0. (6.28)

By assumption 2.5, (6.26) and (6.28), (6.19) reduces to

1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=− 1√

n

n
∑

t=1

X ′
t−1θ20Dt(r0, s)εt

+ [
1

n

n
∑

t=1

X ′
t−1θ20Dt(r0, s)Vt(r0)

′]Σ−1
2

1√
n

n
∑

t=1

Vt(r0)εt + op(1)

,u1n(s) + u2n(s) + op(1). (6.29)

where op(1) holds uniformly in s ∈ [1/s̄, s̄].
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To prove (a), first, we prove the convergence of the finite-dimensional distributions. Note

that the sequence in (6.29) are square-integrable stationary martingale difference. The conclusion

follows from the central limit theorem of Billingsley (1961),

Then, we show that the sequence is tight. By the independence between εt and Xt−1, and

assumption 3.1, for some s̃1, s̃2 between s and τ in [1/s̄, s̄], we have,

E[u1n(s)− u1n(τ)]
2 =E(Xt−1θ20)

2(
∂G(qt−1, s̃1, r0)

∂s
)2(s− τ)2σ2

≤ K2E(Xt−1θ20)
2(|qt−1|α1 + 1)2(s− τ)2σ2

≤ K(s− τ)2 (6.30)

and

E[u2n(s)− u2n(τ)]
2 =E

{

[
1

n

n
∑

t=1

X ′
t−1θ20

∂G(qt−1, s̃2, r0)

∂s
Vt(r0)

′]Σ−1
2 [

1

n

n
∑

t=1

X ′
t−1θ20

×∂G(qt−1, s̃2, r0)

∂s
Vt(r0)]

}

(s− τ)2σ2.

≤K(s− τ)2σ2, (6.31)

where (6.31) holds by assumption 3.1(ii) and ergodic theorem. The existence of the expectations

can be guaranteed by E‖Xt−1‖2(|qt−1|2α1 + 1) <∞.

By (6.30) and (6.31), the tightness follows from Theorem 12.3 of Billingsley (1968). By central

limit theorem and ergodic theorem, the form of the limiting Gaussian process follows immediately

from (6.29). Thus, (a) holds.

To prove (b), by (3.5), let

Zt(θ2, r, s) = θ′2Xt−1Xt−1θ
′
2D

2
t (r, s).

Then, by Taylor’s expansion and for some s̃3 ∈ [τ, s],

|Zt(θ2, r, s)− Zt(θ2, r, τ)| =2|θ′2Xt−1X
′
t−1θ2Dt(r, s)||

∂G(qt−1, s̃3, r)

∂s
||s− τ |

≤2K|θ′2Xt−1X
′
t−1θ2|(|qt−1|α1 + 1)|s− τ |

,At(θ2)|s − τ |, (6.32)

where At(θ2) is strictly stationary and ergodic. Then, by (6.32), Lemma 6.1(i) and a standard

piecewise argument on s ∈ [1/s̄, s̄], it is not hard to show that, for any ǫ > 0, there exists an

η > 0 such that
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lim
n→∞

P ( sup
s∈[1/s̄,s̄]

sup
∆(η)

1

n
|

n
∑

t=1

[Zt(θ2, r, s)− Zt(θ20, r0, s)]| ≥ ǫ) = 0. (6.33)

By (6.32), ergodic theorem and a similar standard piecewise argument again on s ∈ [1/s̄, s̄] or

Lemma A.1 in Francq et al. (2010), we can show that

sup
s∈[1/s̄,s̄]

| 1
n

n
∑

t=1

Zt(θ20, r0, s)− ω(s)| = op(1), (6.34)

where ω(s) is defined in Theorem 3.2. By assumption 2.5, (b) follows from (6.33) and (6.34).

This completes the proof. �
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