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Abstract. The threshold autoregressive (TAR) model and the smooth threshold autoregres-
sive (STAR) model have been among the most popular parametric nonlinear time series models
for the past three decades or so. However, as yet there is no formal statistical test in the litera-
ture for one against the other. The two models are fundamentally different in their autoregressive
functions, the TAR model being generally discontinuous while the STAR model being smooth
(except in the limit of infinitely fast switching). Following the approach initiated by Cox (1961,
1962), we treat the test problem as one of separate families of hypotheses, thus filling a serious
gap in the literature. The test statistic under a STAR model is shown to follow asymptotically
a chi-squared distribution, and the one under a TAR model expressed as a functional of a chi-
squared process. We present numerical results with both simulated and real data to assess the
performance of our procedure.
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1 Introduction

Regime switching models are currently a central area of research activities in time series analy-
sis in both the statistical and the econometric literatures. In the latter, important applications
relate to many aspects of economics, e.g., business cycles, unemployment rates, exchange rates,
prices, interest rates, and others. As far as time series analysis is concerned, the notion of regime
switching can be traced to the introduction of the threshold autoregressive (TAR) model, with
Tong (1978) and Tong and Lim (1980) being the initiators; see also Tong (2011). In the non-time

series context, the idea of smooth regime switching was first introduced by Bacon and Watts
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(1971). The idea was later systematically incorporated in the time series literature by Chan and
Tong (1986) under the name of a smooth threshold autoregressive (STAR) model, as an exten-
sion of the TAR model and the exponential autoregressive model of Ozaki (1980). The STAR
model was enthusiastically pursued by the econometricians; see, e.g., Luukkonen et al. (1988),
Terdsvirta (1994), van Dijk et al. (2002) and Terésvirta et al. (2010), who changed smooth thresh-
old to smooth transition, whilst retaining the same acronym, STAR. However, in applications,
practitioners typically assume either a TAR model or a STAR model on prior and often arbitrary
grounds. Given the fundamentally different switching characteristics (discontinuous vs. smoothly
continuous) of the two models, leading to possibly different interpretations, it is clear that there
is a definite need for a statistical test to help us make an informed decision on the basis of our
data.

This paper aims to fill this long standing gap. It is also prompted by two of the wishes
expressed in Cox (1961, 1962), namely time series and continuous hypothesis vs. discontinuous
hypothesis. As far as we are aware, our paper represents the first attempt at testing for separate
families of hypotheses in nonlinear time series analysis. However, there is an interesting challenge:
although the STAR model includes the TAR model as a special case, it does so only in the form
of a limiting case with the switching becoming infinitely fast. This renders standard nested
tests impotent. In fact, experience in tests for linearity within TAR models (e.g. Chan and
Tong (1990)) shows that the standard likelihood ratio test statistic will follow a complicated
distribution, which is typically not a chi-squared distribution. In order to develop a test that
has sufficient power and is simple to use in practice, we have to adopt an alternative approach
to treat this non-standard problem. In this paper, we shall follow the approach of non-nested
tests initiated by Cox (1961, 1962). We shall develop non-nested tests for departure from a
STAR/TAR model in the direction of a TAR/STAR model, within the context of a separate
families of hypotheses. The separate families are defined by disallowing infinitely fast switching
in the STAR model. We show that the test statistic under a STAR model follows a chi-squared
distribution, asymptotically, and the one under a TAR model is expressed as a functional of a
chi-squared process. Numerical studies are carried out on both simulated and real data to assess
the performance of our procedure.

This paper is organized as follows. Section 2 presents the STAR and TAR models, and the
non-nested testing procedure. Section 3 derives the asymptotic distributions of the proposed

non-nested tests and the related algorithm. Section 4 presents a simulation study. Section 5



analyzes two empirical examples. Section 6 gives the proofs of the theorems.

2 The models and the non-nested testing procedure
The time series {y; : t = 0,+1,£2, ...} is said to follow a STAR(p) model if it satisfies the equation
Yt = Xl‘f*lel +X£7192G(Qt71a5,7“) +5t’ (21)

where X; = (L, yt, .o, Yt—pt1)s 0i = (i, Piry s bip)’s @ = 1, 2. ¢4 € FF, the o-field generated
by (Yt Yt—1,-..s Yt—p+1) and Fy is the o-field generated by (y¢,yi—1,...), 7 is the threshold value
and s > 0 is the switching parameter. Here, {¢;} is a sequence of independent and identically
distributed (i.i.d.) random variables with mean zero and variance 0 < 02 < oo, and G(g;_1,5,7)
is a smooth switching function; for example, the following logistic smooth switching function is a

popular choice
1

T4 5@ i-n’ (2.2)

G(qt—17 S, ’I") -

and model (2.1) with logistic smooth switching function (2.2) is commonly called an LSTAR
model. The true values of the parameters are denoted by 6,9, sg and r¢, respectively. A popular

nonlinear time series model is the TAR(p) model defined as
= X, 101+ X, _1021(qe—1 > 1) + &, (2.3)

where I(-) is the indicator function. Figure 1 plots I(z > 0) and G(z, s,0) for different s with a
fixed threshold r = 0. This figure highlights the difficulty in distinguishing a TAR model from a
STAR model when s is large. To conform with the notion of separate families, we restrict s to
lie in a finite interval, namely s € [s1, s2] with 0 < 571 < s9 < oco. Similar restriction is assumed
for s in the general G(g;—1,s,7). Note that a STAR model has one more parameter (namely s)
than a TAR model of the same order.

Let 6 = (0],05) and A = (¢,s,7)'. We assume that § € © C R?"2 r € I C R and
A€ A C R where ©, T and A are compact sets. We first introduce several assumptions as

follows.
Assumption 2.1. {y;} generated by (2.1) or by (2.3) is strictly stationary and ergodic.

For assumption 2.1 to hold, see the discussions in Chan and Tong (1986) for the STAR model
and Chan (1993) for the TAR model.
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Figure 1: I(x > 0) and G(z,s,0).

Assumption 2.2. (i). & and g have bounded, continuous and positive densities on R and
Ee} < oo; (ii). The conditional density of Xy given q = 1 is fx|q(x|r), which is also bounded,

continuous and positive on RPT! for all r € T.

Assumption 2.2(i) is conventional for the noise ; and threshold variable g;, where the moment
condition Fe? < oo conforms with condition 2 in Chan (1993). Assumption 2.2(ii) implies the

existence of the joint density of (X/,q:), which is used to establish (6.4).

Assumption 2.3. (7). E(|X¢|]?l¢ = r) < K < oo for all v € T; (ii). BE(|X¢||I(r1 < ¢ <
r2)|Fiep) < Kpi_plra — 71|, where pi—p, € Fy—py independent of r1 and ro with Epy_p, < K < 00

for any ri <rg inT', and K > 0 is a constant independent of t and T'.

In what follows, we use the notation K as a generic constant whose value can change. By
assumption 2.2(ii), assumption 2.3(i) is similar to assumption 1.4 in Hansen (2000), which is a
conditional moment condition for | X;| given ¢;, while we only require finite second moment here.
Assumption 2.3(ii) is similar to condition (C3) in Chan (1990), while here we use conditional
expectation without specifying the form of ¢;. When ¢ 1 = 34 for some 1 < d < p, by
assumption 2.2, it is not hard to verify assumption 2.3(ii). For example, if p = 2 and d = 2, then

Xt = (1,9¢,y:-1)" and ¢ = ys—1; for the nontrivial term in assumption 2.3(ii) we have

E(lye|I(r1 < ye—1 < 12| Fi—2)



< KE[(leg| + let—1| +e2)I(r1 — b2 < &1 <12 — ¢p2)|Fi—2]
< Kk 2B[I(r1 — ¢r2 < &1 <12 — ¢p2)|Fi2]
= Kkio[F:(ro — ¢pt—2) — Fe(r1 — ¢r—2)]
< Kkya|ra — 1,
where ¢_9, 149 and k;_o are F;_g-measurable functions of the autoregressors, F.(-) is the

distribution of ¢; and the last line above is due to Taylor’s expansion and the boundedness of the

density function of £; by assumption 2.2. Define
515()\) =Yt — Xt,—lel - X£_192G(Qt71, S T)
and
515(9, ’I“) =Yt — Xéfltgl — Xéfltgzl(qtfl > T‘),

Denote by ), the least squares estimator (LSE) of g in model (2.1) and (6,,#,) the LSE of

(0o, 70) in model (2.3), namely

A = argminy e2()), (2.4)
AEA ;t
(On,7,) = argmin Y &2(6,r). (2.5)

(0,r)eexT 14

We make two assumptions on 5\n and (én, 7y defined as above.

Assumption 2.4. Under model (2.1),

_y1 L g 95 (0)
E1 \/ﬁ EN €t+017(1)7

t=1

\/ﬁ()\n - )\0) -
where X1 = E[0e¢(Xg)/ONDet(No) /ON].

For assumption 2.4 to hold, see the discussion in section 5.2 in van Dijk et al. (2002) on the
estimation of STAR model. For general conditions, we refer readers to Klimko and Nelson (1978),
Ling and McAleer (2010), among others. When G(g;—1,s,r) is the standard normal distribution

function, sufficient conditions are given in Chan and Tong (1986).

Assumption 2.5. Under model (2.3), 7, —ro = Op(1/n) and

R 1 N 0e Ao,
Vil = o) = %' 2= 3 % +0,(1),
t=1

where X9 = E[0e4(00,10)/000e(0p,70)/00"].



For assumption 2.5 to hold, we refer to Chan (1993), where V-ergodicity for the time series
and discontinuity for the autoregressive function in model (2.3) are discussed.

In the spirit of Cox (1961, 1962), and following Davidson and MacKinnon (1981), MacKinnon
et al. (1983), and Bera and McAleer (1989), we can construct a comprehensive or an auxiliary

model given by the following linearly weighted competing function:
yr = X{_ 101+ (1 — 8)X{_102G(qt—1,8,7) + 6 X{_1021(qi—1 > 1) + &4. (2.6)
We shall consider testing the hypothesis
Hy:6 =0 against H; : § = 1. (2.7)

Essentially, we test departure from a STAR model in the direction of a TAR model. Naturally,
we can and do also consider testing departure from a TAR model in the direction of a STAR
model. Under Hy and H;, model (2.6) reduces to model (2.1) and (2.3), respectively. Since model

(2.1) and model (2.3) are non-nested, (2.7) is called a non-nested hypothesis.

3 Asymptotic properties of the non-nested tests

We consider the (conditional) quasi-log-likelihood function of model (2.6) as follows.

1 n
L(6,A) = —5 > Ty = X{_161 — (1= 8)X{_102G (g1, 5,7) — 6X|_ 1021 (gr1 > 7).
=1

Denote Dy(r,s) = G(q-1,s,7) — I(q4—1 > r). Under Hy, we obtain the score function and

information matrix as follows.

OL(0, \ -
% = — tzl {[yt — Xéilel _ X£,102G(Qt—17 87 r)]

X [=X{_1021(q—1 > 1) + X{_162G(qt-1, s,7)]}

== &(N)X] 16:Dy(r,s) (3.1)
=1

and

O?L(0, \ =

T) = — Z HéXt_lXt,_102Dt2(r, 3). (32)

t=1
The score based test statistic for testing Hy against H; is defined as
O?L(0,\n) .1 OL(0, \n) s
Ty, =[— - B - , .

where A, is defined in (2.4). We make one more set of assumptions on the smooth switching

function G(g4—1,s,7).



Assumption 3.1.

(2) ’G(Qt_l,S,r)’ S 1,

. oG —1,8,T a oG —1,5,T e

(). | 212D < (g4 1) and | 2EIEL20)) < gl 4

o O?G(qe—1, s, o PG (qi—1, 8,7 o

(i) ) 2L 5T (g 4 1) and | 2EEE1 5T g, 1),
0%s 02r

) ?G(qi_1, s, o

(i) | ZEIT)) ¢ gl 1),

where aq, ag, as, aq, a >0 and K is a generic constant independent of t as before.

Assumption 3.1(i) is natural because G(q—1,s,7) is a switching function between 0 to 1,
and assumption 3.1(ii)-(iii) are similar to A1-A2 in Francq et al. (2010). However, here we also
need the derivatives with respect to the threshold r. Assumptions 3.1(i)-(ii) are needed for the
existence of the limiting distributions in theorems 3.1-3.2, and assumptions 3.1(iii)-(iv) are used
to prove (6.12). Elementary calculations show that assumptions 3.1(i)-(iv) hold for the LSTAR

model with a; =1, ag =0, a3 =2, a4y =0 and @ = 1.

Define
W] = E{HéoXt—lef,—lHQOD? (7“0, 30)}
and
9 (N B Osi (N
wy = w1 — {EX;_1020Dy(ro, 50) é()\,O)}EH HEX]_ 102Dy (ro, 50)$}
with their estimators
NS R i D2(r g
Win = > {05, X1 X{_102, D7 (7, 50)}
t=1
and
1 T 1 O RS IR N N S o)
Wop = Win — — Z{Xéfle%th(rna Sn) }Eln . Z{thlewlDt(rn’ Sn)i}’
n P a)\/ n P 8)\

respectively, where 3371 = S [9e1(A\,)/ONDet (\n)/ON] /0. Let 62, = —2L(0, \,)/n. Tt is not

hard to show that 63, —, 02 as n — oo under Hy. Then we can state the following theorem.

Theorem 3.1. Under Hy, if assumptions 2.1-2.4 and 3.1 hold, and E|| X;_1||*(|g—1]** +1) < o0

with k = max(aq, g, ag, ag, ), then

Tln CDln

R 2

Sln = 9 = ? L X1
O0n W2n

as n — oo, where X3 is a chi-squared distribution with one degree of freedom.



Next, we discuss the case when Hj is true (i.e., 6 = 1) and we fix s > 0 as a constant in (2.1).

Under Hy , we obtain the score function and information matrix as follows.
aL 1 A)
Z { = Xi161 — X;_1021(qr—1 > 1)

X [=X{_10o1(q—1 > 1) + X;_102G(qs—1, 377”)]}

== &l0,7)X]{_102Di(r, 5) (3.4)
t=1
and
O?L(1,\ =
T) = — Z HéXt_lXt,_102Dt2(r, 3). (35)
t=1

For a given s > 0, the score based test statistic for testing H; against Hy is defined as

O?L(1,0,,5,7) 4 6L(1,67n,s,fn)]2

Ton(s) =1 952 I 90

: (3.6)

where 0, and 7, are defined in (2.5). In (3.6), we have a nuisance parameter s, which is not
identified under H;. In the spirit of Francq et al. (2010), here we assume s € [1/5, 5] for an 5§ > 0
instead of [s1, s3]. Let D[1/s, 5] be the Skorokhod space and = be the weak convergence. We

have the following theorem.

Theorem 3.2. Under Hy, if assumptions 2.1-2.3, 2.5 and 3.1 hold, and E|| X;_1]]*(|q:—1|*** +1)
oo , then,

1 OL(1,0,, 5,7
Vvn o)
102L(1,0,,,7p)

b su - —
®) 56[1/25}’ n 092

(a) = oZ(s) in DI[1/s,5],

—w(s)] =0

as n — 0o, where w(s) = E{0Xi—1X]_1020D7(ro,5)}, Z(s) is Gaussian process with EZ(s) =
0 and EZ(S)Z(T) = E{HéoXt_lXt/_legth(To, )Dt To, T )} - {EX/ 1(920Dt(7“0, )66,5((90,7“0)/60/}
E;l{EXt,_lezth(’l“o, 7-)8515(90, 7“0)/8(9}

Remark 3.1. With the weak convergence of part (a), since w(s) and EZ(s)Z(T) involve neither
derivatives of any order with respect to v nor second-order derivatives with respective to s, and
e1(0,r) is linear in 0, the moment condition in Theorem 3.2 is slightly weaker than that in Theorem

3.1.

Following Hansen (1996) and Francq et al. (2010), among others, we use the supremum

statistic supgep /5,5 Ton(s )/63 as our test statistic, where 67, = —2L(1,0,, s, 7,)/n, which does

8



not depend on s. It is not hard to show that 6%, —, 0% as n — oo under H;. By Theorem 3.2

and the continuous mapping theorem, it follows that

T: VA
Sop := sup 2An2($) —>,  sup (3),
scli/53 Oin scli/s,8 w(s)

which is the limiting distribution of our test statistic. Following Hansen (1996), Francq et al.

(2010) and using (6.19), (6.29) and Glivenko-Cantelli theorem, we can show that the following
algorithm can be used to simulate the quantiles of the distribution of supye(; /55 % conditional

on the data {y1, ..., yn}.

Algorithm 1. Fori=1,...,N:

e (i) generate a N(0,1) sample €(li)’ @

o (ii) set
i IS 5 . i IR 5 3
ZW(s) = — NG Z X{_lﬁgnDt(rn,s)gg )y [W Z X} 102, D¢ (P, 5)
t=p+1 t=p+1
02t(On,Pn) 11 S~ (1) 02t (O, )
D DI e T
t=p+1
and
. 1 =, 5 A
Wn(s) = — Z {05, Xt-1X{_102,D} (1, 5)};
nt:p—l—l
(20D ()]

e (iii) compute Supsc( /s 3 o) denoted by SO,

where 3, = Z?:pﬂ[ast(én,fn)/aﬂaet(én,fn)/é?&’]/n. Conditional on {y1,...,yn}, the sequence
{S(i),i =1,...,N} constitutes an independent and identically distributed sample of the random
variable supe(i /s 4 % The (1 — a)-quantile of the distribution of sup,cp /s % can be
approximated by the empirical (1—a)-quantile of the artificial sample {S®) i =1, ..., N}, denoted

by co. The rejection region of the test at the nominal level « is

Z%(s)
sup > Cqo p -
s€[1/5,3] w(s)

4 Simulation studies

First we examine the performance of the statistic Sy, and S, in finite samples through Monte

Carlo experiments. In the experiments, the sample sizes (n) are 400, 800, 1500, 3000 and 5000,



Table 1: Testing Hy against H;.

n

o} 400 800 1500 3000 5000
0.1 0136 0.096 0.116 0.102 0.102

size so=2 0.05 0.084 0.056 0.046 0.048 0.054
0.01 0.038 0.0124 0.006 0.010 0.008

0.1  0.100 0.108 0.098 0.102 0.084

size so =5 0.05 0.054 0.064 0.046 0.050 0.036
0.01 0.008 0.010 0.006 0.008 0.014

0.1 0.112 0.108 0.102 0.104 0.100

size so =10 0.05 0.046 0.044 0.072 0.048 0.044
0.01 0.010 0.010 0.018 0.006 0.008

0.1 0516 0.592 0.664 0.830 0.912
power 0.05 0.460 0.526  0.610 0.792  0.900

0.01 0.378 0.390 0.482 0.702 0.844

and the number of replications is 500 for each case. The null hypothesis Hy is the STAR(1)
model with (6(,r¢) = (—0.9,—-0.4,2,0.9,0.8) and sy = 2, 5 and 10, respectively, and the smooth
switching function is given by (2.2) with ¢;—1 = y;—1. The alternative hypothesis H; is a TAR(1)
model with ¢y = y—1 and parameters ([, 70) as before. We set the significance levels at 0.01,
0.05 and 0.1; the corresponding critical values for x7 are 6.635, 3.841 and 2.706, respectively. We
use the package tsDyn in R software and lstar function to fit the logistic STAR model when
testing Hy against From Table 1, it can be seen that the size becomes closer to the nominal level
in each case as the sample size increases. Table 1 also shows that the power increases with the
sample size. Generally speaking, we require a sample size in excess of 1500 for decent power. Hj.
The results are summarized in Table 1.

When Testing H; against Hy, we set s = 15, 30 and 45 in Theorem 3.2. For each s, under
Hy, we consider the cases with so = 2, 5 and 10, respectively. We first simulate the critical values
by Algorithm 1 in section 3 with N = 10000. For each sample size n, conditional on one data set
we simulate the critical values ¢, with o = 0.1, 0.05 and 0.01. Table 2 summarizes the results
when § = 15. Since the results for § = 30 and 45 are similar, they are not reported here. From
Table 2, we can see that at each level, the critical values for the different sample sizes are very

close to one another. As a result, we shall adopt their average at each level as the critical value

10



Table 2: Simulated critical values ¢, when testing Hy against Hy with § = 15.

n
data So «@ 400 800 1500 3000 5000 average
0.1 1.84 174 182 1.75 1.78 1.786
TAR 0.05 2.62 249 258 247 2.53 2.538

0.01 453 425 460 4.75 4.44 4.514
0.1 139 141 147 132 1.46 1.410
LSTAR so=2 0.05 200 203 209 189 208 2.058
0.01 3,55 359 3.60 341 383 3.596
0.1 165 170 1.68 1.72 1.70 1.690
LSTAR so=5 005 232 248 242 252 248 2.444
0.01 4.05 432 414 465 4.36 4.304
01 1.80 1.73 1.78 1.81 1.76 1.776
LSTAR so=10 0.05 259 248 254 257 258 2.552
0.01 455 451 449 448 433 4.472

at that level. Strictly speaking, we should simulate the critical value for each data set and for
each sample size n when verifying the efficacy of our test. However, in view of the closeness of
the critical values for different sample sizes, we suggest that taking their average as the critical
value is a practical way to apply our test. Thus, Table 3 summarizes the simulated critical values
with 5 = 15, 30 and 45, respectively. For each s, we choose sg =1, 2, 5, 10 and 15 respectively
in the LSTAR model.

Based on the critical values in Table 3, we use 500 replications in this experiment for each
case and Tables 4-6 report the sizes and powers when testing H; against Hy for s = 15, 30 and
45, respectively. From Tables 4-6, we can see that the sizes are very close to their nominal levels.
We can also see that the power increases with the sample size. For each s, the power is initially
lower when sg = 1, 2 than that when sg = 5, 10 and 15, but when the sample size is larger than
1500, all the powers are quite high and even close to 1 when n > 3000. It is also noted that, when
§ becomes larger, the power seems to decrease slightly at each corresponding slot. Moreover,
Tables 4-6 show lower power at sg = 1 and 2 than at 5, 10 and 15, The explanation for this and
the above observation rests with 5, := {s : supsc(1/5,5 Ton(s)/ 62}, which, as an estimator of s,
depends on sg, n and § in a fairly complex manner. Table 7 shows the relation when n = 400. It

shows the mean of 500 estimators for each sg. In view of Figure 1, a larger estimator §, will give

11



Table 3: Simulated critical values ¢, when testing H; against Hy.

data s so a=01 a=005 «o=0.01

TAR 15 1.786 2.538 4.514

TAR 30 2.153 3.128 5.320

TAR 45 2.370 3.374 6.052
LSTAR 15 1 1.166 1.723 3.103
LSTAR 15 2 1.410 2.058 3.596
LSTAR 15 5 1.690 2.444 4.304
LSTAR 15 10 1.776 2.552 4.472
LSTAR 15 15 1.744 2.495 4.410
LSTAR 30 1 1.783 2.597 4.585
LSTAR 30 2 1.870 2.659 4.693
LSTAR 30 5 2.076 2.941 5.171
LSTAR 30 10 2.181 3.092 5.415
LSTAR 30 15 2.177 3.110 5.397
LSTAR 45 1 2.024 2.886 4.995
LSTAR 45 2 2.224 3.177 5.489
LSTAR 45 5 2.362 3.333 5.760
LSTAR 45 10 2.347 3.306 5.745
LSTAR 45 15 2.286 3.248 5.577

12



Table 4: Testing H; against Hy when s = 15.

n

data S0 @ 400 800 1500 3000 5000
0.1 0.170 0.154 0.156 0.146  0.160
size TAR 0.05 0.070 0.072 0.082 0.080 0.086
0.01 0.014 0.020 0.020 0.018 0.012
0.1 0582 0.704 0.748 0.904 0.982
power LSTAR so=1 0.05 0442 0.532 0.640 0.832 0.950
0.01 0.198 0.272 0.378 0.638 0.864
0.1 0.382 0.604 0.776 0.886 0.962
power LSTAR sp=2 0.05 0.224 0432 0.642 0.822 0.930
0.01 0.070 0.170 0.364 0.606 0.820
0.1  0.956 1 1 1 1
power LSTAR sp=5 0.05 0.916 1 1 1 1
0.01 0.720 0.996 1 1 1
0.1  0.910 0.996 1 1 1
power LSTAR so=10 0.05 0.856 0.994 1 1 1
0.01 0.622 0.970 1 1 1
0.1 0.786 0.990 1 1 1
power LSTAR so=15 0.05 0.690 0.976 1 1 1
0.01 0.442 0.926 1 1 1

13



Table 5: Testing H; against Hy when s = 30.

n

data S0 @ 400 800 1500 3000 5000
0.1 0.138 0.160 0.180 0.118 0.150
size TAR 0.05 0.064 0.078 0.100 0.060 0.080
0.01 0.012 0.010 0.014 0.008 0.016
0.1 0584 0.664 0.752 0.892 0.962
power LSTAR so=1 0.05 0402 0.500 0.622 0.804 0.934
0.01 0.146 0.198 0.324 0.552 0.784
0.1 0.390 0.520 0.668 0.774 0.864
power LSTAR so=2 0.05 0220 0.378 0.552 0.672 0.768
0.01 0.060 0.126 0.270 0.444 0.578
0.1  0.962 1 1 1 1
power LSTAR sp=5 0.05 0.888 0.998 1 1 1
0.01 0.640 0.996 1 1 1
0.1 0.868 0.998 1 1 1
power LSTAR so=10 0.05 0.802 0.996 1 1 1
0.01 0.534 0.956 1 1 1
0.1 0.786 0.980 1 1 1
power LSTAR so=15 0.05 0.638 0.952 1 1 1
0.01 0.342 0.842 1 1 1
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Table 6: Testing H; against Hy when 5 = 45.

n

data S0 o 400 800 1500 3000 5000
0.1 0.152 0.162 0.142 0.164 0.168
size TAR 0.05 0.066 0.070 0.080 0.086 0.082

0.01 0.020 0.010 0.012 0.014 0.018

0.1  0.588 0.692 0.816 0.914 0.960
power LSTAR so=1 0.05 0420 0.492 0.676 0.818 0.920

0.01 0.148 0.182 0.354 0.538 0.778

0.1 0330 0496 0.628 0.746 0.778
power LSTAR so=2 0.05 0.182 0.322 0.470 0.600 0.668

0.01 0.034 0.096 0.238 0.380 0.442

0.1 0.930 1 1 1 1
power LSTAR sp=5 0.05 0.832 1 1 1 1
0.01 0.518 0.986 1 1 1
0.1  0.842 0.996 1 1 1
power LSTAR so=10 0.05 0.728 0.994 1 1 1
0.01 0.410 0.930 1 1 1
0.1 0716 0.978 1 1 1
power LSTAR so=15 0.05 0.564 0.962 1 1 1
0.01 0.284 0.826 0.998 1 1

Table 7: The realized estimator §,, for different true value sg under H; when n = 400.

S0

5 0.5 1 2 5 8 10 15 20

15 | 13.37 13.23  9.00 6.54 8.65 9.73 11.38 12.06

30 | 24.13  24.07 20.69 6.75 9.23 10.66 13.83 16.5

45 | 32.64 32.83 31.56 7.83 9.38 1094 15.10 18.05

100 | 56.65 55.57 58.6  20.04 16.74 16.99 21.29 25.72

15



rise to less difference between the smooth function and the indicator function and hence a lower
power, and a smaller one will give higher power. The result in Table 7 conforms to the ones we

obtained in Tables 4-6.

5 Real data examples

In this section, we re-visit two real data sets to illustrate our tests. Now, Terésvirta et al. (2010)
fitted (on p. 390) an LSTAR model to the Wolf’s sunspot numbers (1700 to 1979) and van Dijk
et al. (2002) fitted a similar model to the U.S. unemployment rate. Later, Ekner and Nejstgaard
(2013) examined the profile likelihoods of the switching parameter of the above two examples,
after an appropriate reparametrization.

The first data set consists of the Wolf’s annual sunspot numbers, which are available at the
Belgian web page of Solar Influences Data Analysis Center.*. Terésvirta et al. (2010) fitted an
LSTAR model to the sunspot numbers for the period 1700-1979. Following Ghaddar and Tong
(1981), they used the square-root transformed sunspot numbers, namely y; = 2{(1 + z)/? — 1},
where z; is the original sunspot number. Ekner and Nejstgaard (2013) reproduced the LSTAR

model as well as fitted a TAR model as follows (standard deviations in parentheses):f

Hy: y = 1461 —0.76y,—o + 0.17y;—7 + 0.11y,—9
(0.08)  (0.13)  (0.05)  (0.04)
+(2.65 — 0.54y;1 + 0.75y;_2 — 0.4Tys_3
(0,85) (0.13)  (0.18)  (0.11) )
+0.32y4—4 — 0.26y;—5 — 0.24y; g + 0.17y;—10) G (yi—2, 5'46/5-3#—2’ 7.88) (5.1)
(0.11)  (0.07)  (0.05)  (0.06)

and

Hi: y = 1431 —0.7Tyi—o +0.17y—7 + 0.12y,_9
(0.08)  (0.14)  (0.05)  (0.05)
+(2.69 — 0.45y;,—1 + 0.69y;—o — 0.48y;_3
(0,70) (0.11)  (0.18)  (0.11)
+0.36y;—4 — 0.27y;_5 — 0.21y;_g + 0.14y;_10) I (y¢—2 > 6.39), (5.2)
(0.11)  (0.07)  (0.05)  (0.05)

“http://www.sidc.oma.be/sunspot-data/
fThere are very minor differences between three of the estimated parameters, most probably due to rounding

from two decimal places to one in Terésvirta et al. (2010).
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Table 8: Testing (5.1) against (5.2) (NR=not rejected)

a=01 «a=005 a=0.01| p-value

Decision NR NR NR 0.764

Table 9: Testing (5.2) against (5.1).

|

a=01 «a=005 a=0.01| p-value

15 NR NR NR 0.964
Decision | 30 NR NR NR 0.958
45 NR NR NR 0.962

where 6, , is the standard deviation of ¢;—1 = y;—o, 63n = 3.414 and &%n = 3.410. From the data,
we obtain &y, , = 5.57, giving §, = 0.98. When testing Hy (i.e., (5.1)) against H; (i.e., (5.2)), the
results are summarized in Table 8. From Table 8, we can see that we do not reject (5.1) at each
of the three levels and the p—value is 0.764. Then we test H; against Hyp and we choose 5 = 15,
30, and 45, respectively. The results are summarized in Table 9. From Table 9, we can see that
we again do not reject (5.2) at each of the three levels and for each s, and the p—values are 0.964,
0.958 and 0.962, respectively. Tables 8 and 9 suggest that given a sample size of only 280 and
the fairly large number of parameters (14 for (5.1) and 13 for (5.2)), neither test seems to enjoy
sufficient power to detect departure from one model in the direction of the other. However, the
difference between the near-unity p—values in Table 9 as against the p—value of 0.764 in Table
8 suggests that, if properly reformulated as Bayesian posterior odds, it can lend credence to the
conclusion of Ekner and Nejstgaard (2013), which finds from their profile likelihood analysis that
‘the global maximum is actually the TAR model’ whereas the STAR model adopted by Terésvirta
et al. (2010) is only a local maximum.

In the second example, we re-examine the monthly seasonally unadjusted unemployment rate
for U.S. males aged 20 and over for the period 1968:6-1989:12, to which van Dijk et al. (2002)
fitted an LSTAR model." Ekner and Nejstgaard (2013) re-examined the above LSTAR model as

well as fitted a TAR model as follows (standard deviations in parentheses).

¥The series is constructed from data on the unemployment level and labor force for the particular sub-
population. These two series are published together with Gauss programs used to estimate their model at

http://swopec.hhs.se/hastef/abs/hastef0380.htm.
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HO . Ayt = 0479 + 0.645D17t - 0.342D27t - 0.68D37t - 0.725D47t - 0.649D57t

(0.07)  (0.07) (0.10) (0.09)  (0.11) (0.10)
—0.317Dg; — 0.410D7; — 0.501Dg s — 0.554Dg ; — 0.306 D14
(0.09) (0.09) (0.09) (0.09) (0.07)
+[—0.040y;_1 — 0.146Ay;_1 — 0.101Ay,_g + 0.097Ar;_g — 0.123Ay;_10
(0.01) (0.08) (0.06) (0.06) (0.06)
+0.129Ayt,13 - 0.103Ayt,15] X [1 - G(Alzytfl, 23'15/6A12yt—1 s 0274)]
(0.07) (0.06)
+[—0.0111_1 4+ 0.225A1;,_1 4+ 0.307Ay_s — 0.119Ay,_7 — 0.155A1;_13
(0.01) (0.08) (0.08) (0.07) (0.09)
—0.215Ayt—14 — 0.235Ayt_15] X G(Algyt_l, 23'15/&A12yt—17 0274)
(0.09) (0.09) (5.3)

and

Hy: Ay, = 0473+ 0.644D;; — 0.343Dyy — 0.675D3, — 0.721Dy, — 0.641 D5,

(0.07) (0.07)  (0.10) (0.09) (0.11) (0.10)
—0.308Dg,¢ — 0.410D7,, — 0.505Ds; — 0.546 D9, — 0.295D1q.;
(0.09)  (0.09)  (0.08) (0.09) (0.07)
+[_0-040yt—1 — 0.14Ay; 1 — 0.094Ay; ¢ + 0.092Ay;_g — 0.116Ay;_19
0.01)  (0.08) (0.06) (0.06) (0.06)
—|—0.136Ayt_13 — 0.106Ayt_15] X I(Algyt_l < 0268)
(0.07) (0.06)
[-0.012ye1 + 0.227Ay;_1 + 0.307Aye_s — 0.094Ay,_7 — 0.146Ay,_13
(0.01) (0.08) (0.08) (0.07) (0.09)
—0.211Ay; 14 — 0.216Ay;_15] X 1(A12y;—1 > 0.268)
(0.09) (0.09) (5.4)

where Ay: = yr — ye—1, Aoyt = Yt — Y112, 05, = 0.03407 and 6%, = 0.03412, and D; ; is monthly
dummy variable where D;; = 1 if observation ¢ corresponds to month ¢ and D;; = 0 otherwise.
From the data, we obtain 6a,,y,_, = 1.35, giving 5, = 17.15. The results of testing Hy (i.e., (5.3))
against H; (i.e., (5.4)) are summarized in Table 10. From Table 10, we can see that we reject
(5.3) at 0.1 significance level and do not reject it at the 0.05 and 0.01 levels, and the p—value is
0.075. Then we test H; against Hy and choose § = 15, 30 and 45, respectively. The results are
summarized in Table 11. From Table 11, we can see that we do not reject (5.4) at any of the
three levels for each s, and the p—value is 0.99 for each 5. Overall, the results tend to suggest
that a TAR model is more plausible than a STAR model. The same conclusion was drawn by
Ekner and Nejstgaard (2013), who found that for the STAR model, the profile likelihood of the

s parameter is rather flat and the maximum occurs at a rather large value of s; they concluded

that ‘a large and imprecise estimate of s implies that the LSTAR model is effectively a TAR
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Table 10: Testing (6.3) against (6.4). (NR=not rejected)

a=0.1 a=0.05 «a=0.01 | p-value

Decision rejected NR NR 0.075

Table 11: Testing (6.4) against (6.3).

5 a=01 «a=0.05 «a=0.01 | p-value

15 NR NR NR 0.99
Decision | 30 NR NR NR 0.99
45 NR NR NR 0.99

model.” However, the very large number of parameters for both models tends to suggest some

model over-parametrization.

6 Proofs of Theorems 3.1-3.2

To prove Theorem 3.1, we need the following basic lemma.

Lemma 6.1. {X;} is a strictly stationary and ergodic process, f(Xy,0) is a measurable function
with respect to X; and 6 € ©, which is a compact set in R® for some integer d > 0.

(1) If Esupgee | f( X, 0)| < 0o and Ef(Xy,0) is continuous in 6, then, for any € > 0, there exists
an n > 0 such that

lim P( sup |3 [F(X06) ~ F(X0.00)]] > ) =0 (61)

nO lo—6oll<n i

(i) If f(X4,0) satisfies assumption 2.3 with || X¢|| and I" replaced by | f(X¢,0)| and [0, %] for any
6 € © and M > 0, respectively, and ¢ € FY, which has bounded, continuous and positive density

fq(x) on R, then, for any e >0 and 0y € O,

. 1 <
lim P( sup %| D F(Xi,00)I(0 < g <7)i| =€) =0, (6.2)
t=1

n—oo M
Ogrgﬁ
where {e} is an i.i.d. sequence independent of Fy with mean zero and finite variance.

Proof. (i). Let

Hy(n) = sup |f(Xy,0) — f(Xy,00)l-
16—60||<n
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Since Esupyeg |f(X¢t,0)] < oo and Ef(Xy,0) is continuous in 6, for any € > 0, there exists an
17 > 0 small enough, such that EHy(n) < €/2. As Hy(n) is strictly stationary and ergodic, by

ergodic theorem, we have

) = 0.

DO ™

n—00

lim P(— ZHt ) < lim P( —|Z[Ht(n) — EHy(n)]| >
t=1

Thus, (6.1) holds.
(ii). As the interval [0, M] is compact, for any small § > 0, there is a finite integer N > 0 such
that 0 = MO < M1 <..< MN = M with |M - Mi,1| < (5 1= 1,...,N. Then,
P( sup | F( X1, 00)I(0 < g <71)et] >¢€)
0<r< M \/— Z

1

<P( sup sup |Zf(Xt,90)I(O <q <r)eg| >€)

1<i<N M; M; %
t \/— S S\/— t_l
<P( sup sup —| Zf (X¢,00)1 <r)et| > €/2)
1iSN Miy <T f
\/_ —

Z" M;
P Xt7 S
s (X“‘)O)St'”Mf < I ”] > 55m)

+ZP (\/—Z [E |f (X, 00) 5t|f( \/ﬁ <q < %)mml)

€

\f(Xt,GO)Et\I(AfI/Z—l <@ = \/_)‘}—t p)] 2 W>}

Mz 1 M €
+ P( su E(|f(X¢,00)ee| L < gt < > o
1<Z<PN Z ([f (X, 00)ee|1( NG qr < f)| t—p) 2(p+ 1)

)

i

i—1

N
+Z \/,]Zth,HO (0<q < \/—)gt’>€/2)

é1_[171 + H2n + H3n- (63)

For any random variable Z, if the joint density of (Z, q;) exists, we have

%E[Z](qt < 1) = E[Z|q =r]fq(r),

then, for any rq, ro € I' with r1 < ro, by Taylor’s expansion,
\E[ZI(r1 < qr < 72)]| = [E[Z]gr = 77| fq(r*)|[r2 — 71], (6.4)
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where r* lies between r; and 75.

By (6.4) and assumption 2.2-2.3, we have the following three inequalities in order,

( Z[ (1 (X0, B0)er (2

(I bl < g < j%)mm])

M;_ i
S2BIf (X o)ei 1= <@ < 720)
1)
<K— :
<K (6:5)
E E(|£(Xy,00)|I( Mo F
[121<pN E (If (X, 00)ee | I( << \/—)! t—p)]
M; — M;_;
=E[ s E Ele
1<?<I)Nf P vn —m o

SHE Z Elpp|}Ele:]
t=1

<K, (6.6)
and
E(% > 70600 < ac < ]f};)sf
=X 0010 < <
M; 4
<K—=, (6.7)

where j = 0,1,...,p — 1, 9, is defined in assumption 2.2 and K > 0 is a generic constant
independent of ¢.
By Markov inequality and (6.5)-(6.7), we have

N

Kp5 al M;_
M + M +Tn <3 oG T P * 5T Mt e 0% 69

as n — oo and & — 0. Then, (6.2) follows from (6.3) and (6.8). [

Proof of Theorem 3.1. Under Hy, by Taylor’s expansion, we have

86t ()\nt

1) = 50%0) + 3 (5, — )
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N 1 aat()\nt)
= &t + \/ﬁ ON

\/ﬁ(j\n - )\0)7

where \,,; lies between 5\n and A\g for each t. Then, it follows that

1 OL(0, \,) 1 &<, - L
—_—— = — — X D
\/ﬁ 6(5 \/ﬁtzl t—102n t(rTUSn)Et
1 - ~ N N aat()\nt) o
— =Y X! 09, Dy, 5n Ap — A
2 2 Xicalan Dl ) =V = o)
1 ., - o
= - % ZXplQQnDt(Tm Sn)ﬁt
s a
__ZX{, 192nDt(Tna5n) é()\, )\/a()\n_)\o)"'Rna
where
Oei (A, Oei(Ap “
ng 1O2n Dy (7, 80)( é&,) ia(x t))\/ﬁ()\n—)\o)
gt
1 < A o . &ey(\: .
32 > Xt 1020 Di(Fy 50) VR (N — )\nt)lia)t\(a)\/t) Vi — o),
t=1

(6.10)

(6.11)

where A7, lies between M and A, for each t. By assumptions 2.1-2.4 and the definition of A,
n (6.9), vi(An — Xo) = Op(1), sup<p, vilAn — Aut| < V12[An — Ao| = Op(1). For any matrix

or vector A = (a;j), we introduce the notation |A| = (|a;;|) in this proof. Then, by assumption

3.1(iii)-(iv),

8 515(

)
)| (R — o)

| R,

S\/ﬁ’(j\n — 3/2 Z ’X 102nDt rnasn)H

<Vnl(An = Ao)| 3/22!)(/ 1020 Dy (P 30) [IM (X1, qe—1) [V An — A0),

where M (X;—1,q:—1) is defined as

0 0
M(Xi-1,qt1) = ;
0 P(Xi1,0-1) (2p+4)x(2p+4)
where
0 | Xe—allg—1 | |1 X1 llgr—1]*
P(Xe1,q0-1) = [ X7 llgal™ (1 Xealllge—]* [ Xealllg—]®

/ (651 « (%]
‘Xt—lHQt—ﬂ HXt—l”f%—l’ HXt—1WQt—1’ (p+3)x
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By assumption 2.4 and Lemma 6.1(i) it is not hard to show that

1

n
n3/2 Z | X 1020 Dt (P, 30)|[|M (X1, gr—1)] = 0p(1).
t=1

Thus,
R, = 0,(1).

(6.12)

Now, we look at the first term on the right-hand side of (6.10). Let £ = (05, s,7)" and ¢:(§) =

X, 102G(qi—1,s,r), by Taylor’s expansion, assumption 2.4 and Lemma 6.1(i), we can show that,

for some &, lying between én and &,

SO ALEE) BRI P R NS
t=1 t=1 t=1

:% S gulo)er + 0p(1).
t=1

and

1 & . ) 1 & "
NG > X[ 10 I(gi1 > e = > X! 10201(gi-1 > Fn)e
=1 =1

1 « . R
+[~ > X[ I(gi-1 > Pn)ed] V(B — 0)
t=1
1 n
= Z X 10201(qi—1 > Pn)er + 0p(1).
Vi

By Lemma 6.1(ii) and assumption 2.4, we can also show that

1 « R 1 &
Tn ZX£_1920](%71 > e = 7n ZX£—1‘92OI(%71 > 7r0)et + 0p(1).
=1 =1

By (6.10), (6.12)-(6.15), assumption 2.4 and Lemma 6.1(i), it follows that

1 OL(0,\,)

1 n
_ = ZX£_1920Dt(7”07 80)Et
Vi o Vi

ox 0

1 - aat()\o) 1 1 " aat()\o)
+[= > X{_1020Dy(ro, s0) o= e+ op(1).
n vn — A

t=1
By ergodic theorem and central limit theorem, we have
1 OL(0,\,)

N 2
\/ﬁ 96 — (O,J wg),

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

Assumption 3.1 and the condition E|| X 1]*(|¢:—1|** + 1) < oo can guarantee the existence of

wa. By (3.2), assumption 2.4, Lemma 6.1(i) and ergodic theorem,

C10°L(0, )

o 902 —p E{HéoXt,ng,lﬂgon(ro, 80)} = W1.
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By (3.3), (6.17), (6.18), 63, —p 02, &1n —>p w1, Wan, —p w2 and Slusky theorem, we have

Tln djln

2
~2 o~ —L Xl7
O0n W2n

as n — oo. This completes the proof. [

Proof of Theorem 3.2. By a similar argument as above, for a fixed s € [1/5, 5], we replace
¢(An) with &.(0,,7,) and take the derivatives with respect to 6 in (6.9), de¢(6,7,)/80" does not
depend on # anymore. Denote Vi(r) = 0e¢(0,r)/06. By assumption 2.5, 7, — 19 = Op(1/n), then,
by (6.4) and the uniform boundedness of Dy(r,s), it is not hard to show that,

LSSy 4 s .
oy B ’ﬁ ; Xi102n Dt (70, 8)[e1 (00, ) — &4 = 0p(1).

Then, for each s € [1/5, §], it follows that

1 OL(1,0,,s,7) 1 & R X
%T = — % ; Xt{flegnDt(Tn, 8)515
1 o X X R R
- [E Z Xy 1020 De(n, $)Ve(F)']v/10(05 — 00) + 0p(1), (6.19)
t=1

where 0p(1) holds uniformly in s € [1/5, 5], as n — oo.

Now, we look at the first term on the right-hand side of (6.19). Let ¢ = (05, r)" and ¢,(¢,s) =
X, _102Gi(qi—1,s,7). Then,
1 &

% ; X} 102,G(gi-1,5,70)er = 7n ;gt(co, s)er + [% ; Lgtécgj’ S)Et]\/ﬁ(én — <o) (6.20)

where (; lies between én and (p, and

%CH,’S) = (XéflG(qt—la S, T:L)v thfl(g;n

aG(Qtfla S, 7“;1) )
or ’

By assumption 3.1, we can show that for any s, 7 € [1/8, 5],

‘ 6gt(c;kw S) o 6gt(c;kw 7—)
ac’ o’

<K(Xi1l(lge]™ + 1), 1 X1 (g1 + 1))]s — 7|

=Ji|s — 7], (6.21)

where J; is strictly stationary and ergodic. Denote A(n) = {(02,7) : ||02 — o] + | — 10| < n}. By

(6.21), a standard piecewise argument on s € [1/5, 5] and Lemma 6.1(i), we can show that

L5~ 09(Gs) 1= 99u(Gos)
sup sup |— €t — — et| = op(1), (6.22)
sell/s,3 am) ™ ; o ; a¢ N
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as 7 small enough. By ergodic theorem, (6.21) and a standard piecewise argument as Lemma A.1

in Francq et al. (2010)

1 . 6gt(C078)
sup |— ) =] = op(1). (6.23)
se€[1/5,5 T ; o’ ' P

By assumption 2.5, (6.22) and (6.23), it follows that

sup \l Zn: Met\ = op(1). (6.24)

se(/ss i o¢’

By assumption 2.5, (6.4) and a similar argument as (6.14), we have

1 < X -
— le 02 I(qt,1 > 7 )51‘, = — le ngf(qt,1 > 7“0)515 +o (1) (6.25)
\/ﬁ ; t—1Y2n n \/ﬁ ; t—1 P
By (6.20) and (6.24)-(6.25), it follows that
1 & 1 &
= X} 1020Dy(Fn, 8)er = —= Y X{_1020Dy(r0,8)er + 0p(1), (6.26)
\/ﬁ ; t—1Y2n n \/ﬁ ; —1 D

where 0,(1) holds uniformly in s € [1/5, 5].
We then consider the second term on the right-hand side of (6.19). Let By(fa,7,s) =
X, _102D(r,s)V(r)'. By assumption 3.1, for any s, 7 € [1/5,35], and each 0y and r, by Tay-

lor’s expansion, we have
| Be(02,7,5) — By(ba,r, ) < K|X{_102Vy(r)'|(|ge—1|*" + 1)ls — 7| = Quls — 7. (6.27)

where @; is strictly stationary and ergodic.
By Lemma 6.1(i), a standard piecewise argument on s € [1/s, 5] and (6.27), we can show that
for any € > 0, there exits an n > 0 such that
1 n
lim P( sup sup —| > [Bi(6,7,5) — Bi(b0,70,5)]| > €) = 0. (6.28)
e sell/ss Am) i

By assumption 2.5, (6.26) and (6.28), (6.19) reduces to

1 6L(17én7877ﬁn) 1 i /
M — N X 090Dy (10, 8)es
NG Bl Vi =

1< 41 ¢
+1 > X{_1020Dy(ro, 5)Vi(ro) 125 lﬁ > Vi(roer + 0p(1)
t=1 t=1

21, (8) + u2n(s) + 0p(1). (6.29)

where o0,(1) holds uniformly in s € [1/5, 5].
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To prove (a), first, we prove the convergence of the finite-dimensional distributions. Note
that the sequence in (6.29) are square-integrable stationary martingale difference. The conclusion
follows from the central limit theorem of Billingsley (1961),

Then, we show that the sequence is tight. By the independence between ¢; and X;_1, and
assumption 3.1, for some §1, S between s and 7 in [1/5, 5], we have,

0G(q¢—1,51,70)
0s

< K?B(Xi-1020)* (|ge—1]** + 1)*(s — 7)%0?

E[uln(s) — uln(’i‘)]2 ZE(Xt_1920)2( )2(8 — 7')202

< K(s—1)? (6.30)
and
1 — IG(qr—1, 3o, 7 1l &
Bl (5) — s (7)) = {[g > Xy T 55 S X
t=1 t=1

P50 )y gy b s — 7y

<K(s —7)%0? (6.31)

where (6.31) holds by assumption 3.1(ii) and ergodic theorem. The existence of the expectations
can be guaranteed by E||X;_1||*(|g—1]*** + 1) < 0.

By (6.30) and (6.31), the tightness follows from Theorem 12.3 of Billingsley (1968). By central
limit theorem and ergodic theorem, the form of the limiting Gaussian process follows immediately
from (6.29). Thus, (a) holds.

To prove (b), by (3.5), let

Zt(027 T, 3) = HéXt—lXt—leéDtQ (T7 S)'

Then, by Taylor’s expansion and for some 33 € [7, s],

aG(qt—l 3 537 T)

| Z4(02,7,5) — Zi (02,7, 7)| =2]05X; 1 X} 102D4(r, )| P l[s — 7|
<2K (05 X1-1X{_102|(|gr—1]"" + 1)[s — 7|
£ A:(09)|s — 7], (6.32)

where A;(63) is strictly stationary and ergodic. Then, by (6.32), Lemma 6.1(i) and a standard
piecewise argument on s € [1/s,35], it is not hard to show that, for any € > 0, there exists an

1n > 0 such that
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n

1
lim P( sup sup —| Z[Zt(Qg,r, s) — Zi(020,70,5)]| > €) = 0. (6.33)
e seli/saam ™

By (6.32), ergodic theorem and a similar standard piecewise argument again on s € [1/§,§] or

Lemma A.1 in Francq et al. (2010), we can show that

1 n
sup | = Zi(620,70,5) — w(s)| = 0p(1), (6.34)
se(1/s5 i

where w(s) is defined in Theorem 3.2. By assumption 2.5, (b) follows from (6.33) and (6.34).

This completes the proof. [
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