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ESTIMATION OF THRESHOLD MODELS

Dong Li and Howell Tong
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Abstract: Threshold models have been popular for modelling nonlinear phenomena
in diverse areas, in part due to their simple fitting and often clear model interpre-
tation. A commonly used approach to fit a threshold model is the (conditional)
least squares method, for which the standard grid search method typically requires
O(n) operations for a sample of size n, which is substantial for large n, especial-
ly in the context of panel time series. This paper proposes a novel method, the
nested sub-sample search algorithm, which reduces the number of least squares op-
erations drastically to O(logn). We justify the new algorithm theoretically as well
as demonstrate its speed and reliablity via Monte Carlo simulation studies with
finite samples.

Key words and phrases: Least squares estimation, nested sub-sample search algo-
rithm, threshold model.

1 Introduction

Threshold models have attracted much attention and been widely used to model
nonlinear phenomena in diverse areas, such as ecology, economics, finance and
others. Their success is partly due to their simple fitting and often clear interpre-
tation. Threshold models are typically characterized by piecewise linearization
via partitioning the response space into regimes by some threshold (or covari-
ate) variable, thereby providing a relatively easy-to-handle approximation of a
complex system. When the model within each regime is a linear regression,
we have the well-known two-phase regression of Quandt (1958). On the other
hand, when the model within each regime is a linear autoregression, we have
the well-known threshold autoregressive (TAR) model of Tong (1978). See also
Tong and Lim (1980), Tong (1990) and the references therein. Recently Hansen

(2011) has provided a fairly comprehensive review of TAR models by reference
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to 75 influential papers published in the econometrics and economics literature.
A concise overview of the history and prospects of threshold models is given by
Tong (2011).

As far as theoretical results are concerned, much progress has been in two-
phase regression since Quandt (1958) and TAR models since Tong (1978). For
the former, see, e.g., Bacon and Watts (1971), Goldfeld and Quandt (1972), Mad-
dala (1977), Quandt (1984) and others. For the latter, see, e.g., Chan (1993),
who first showed that the least squares estimator (LSE) of the threshold pa-
rameter is super-consistent and obtained its limiting distribution theoretically;
Hansen (1997, 2000), who presented an alternative approximation to the limiting
distribution of the estimated threshold when the threshold effect diminishes as
the sample size increases; Gonzalo and Pitarakis (2002), who developed a se-
quential estimation approach that makes the estimation of multiple threshold
models computationally feasible and formally discussed the large sample prop-
erties; Li and Ling (2012), who established the asymptotic theory of LSE in
multiple threshold models and proposed a resampling method for implementing
the limiting distribution of the estimated threshold directly when threshold effect
is fixed. Other significant results related to threshold models include Tsay (1989,
1998), Hansen (1996), Caner and Hansen (2001), Gonzalo and Wolf (2005), Seo
and Linton (2007), Yu (2012) among others.

Despite the theoretical progress in threshold models, computational issues
are somewhat lacking behind, which hinder wider practical applications. A key
issue is computational cost.

A commonly used approach to fit a threshold model is the (conditional) least
squares method. When the threshold is known, the threshold model is piecewise
linear in the remaining parameters and thus linear estimation techniques'can be
applied. However, when the threshold is unknown, the ordinary least squares
method for linear regression cannot be applied immediately since the threshold
parameter lies in an indicator function. This issue has been commonly tackled by
using the single grid search (SGS) algorithm over a feasible threshold space; see
Tong and Lim (1980), Chan (1993), Hansen (1997, 2000), Gonzalo and Pitarakis
(2002), Li and Ling (2012), Yu (2012), and others. The SGS algorithm requires

least squares operations of order O(n) for single threshold models, where n is the
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sample size. If n is small, the SGS algorithm can be effectively used to search for
the estimate of the threshold over a set of threshold candidates by enumeration.
However, when n is large, this algorithm can be rather time-consuming. The
situation is worse when we wish to fit threshold models to a panel of observations.
Gonzalo and Wolf (2005) considered subsampling inference of threshold models
and massive computations are needed in the choice of the block size. Similarly,
massive computations are also needed in bootstrap estimation of single threshold
models in Seijo and Sen (2011). In practice, conventional numerical approach for
threshold modelling incurs inevitably high cost. For example, about np? least
squares operations are needed when fitting a threshold model with p covariates
to data with sample size n. For example, if n is 1000 and p is 10, then we need
about one million least squares operations. Thus, it is crucially important to find
ways to reduce the computational cost when fitting a threshold model.

In the time series literature, Tong (1983, Appendix A10) proposed and later
Tsay (1989) re-discovered the SGS approach based on the rearranged technique,
which essentially turns the threshold estimation into a change-point problem of
the associated order statistics obtained from the observations. See also Ertel
and Fowlkes (1976). This method is now available by calling the function tar
in the package TSA in R; see Chan and Ripley (2012). For the SGS algorithm of
threshold regression models, a program in R by Hansen (2000) is available on the
website:

http://www.ssc.wisc.edu/ “bhansen/progs/ecnmt_00.html.

Wu and Chang (2002) proposed a genetic algorithm for TAR models. However,
this algorithm has many limitations, as recognised by the above authors, so it
is not widely used in practice. Coakley, Fuertes and Pérez (2003) presented an
algorithm based on the QR decomposition of matrices for a particular class of
TAR models (called the band-type TAR model). For general threshold models,
the SGS algorithm remains to-date the most commonly adopted technique in
practice due to its simplicity and reliability, although it is time-consuming.

In this paper, we propose a novel algorithm, namely the nested sub-sample
search algorithm, or the NeSS algorithm for brevity, to produce a much faster
search that is reliable in the context of threshold estimation. Compared with ex-

isting algorithms, the NeSS algorithm reduces the computational cost drastically
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from O(n) down to O(logn) least-squares operations, n being the sample size.
The idea is simple. We shrink the nested feasible set step by step and finally
maximize J,(r) in (2.4) over a small feasible set by enumeration so that it is
expected to save computational costs. Its validity is also supported theoretically.
The performance of our method is evaluated via Monte Carlo simulation studies
in finite samples.

The remainder of the paper is organized as follows. Section 2 addresses the
model and estimation issues. Section 3 presents our new algorithm. Section 4
evaluates the performance of our algorithm via Monte Carlo simulation studies

and Section 5 concludes the paper.

2 Model and Least squares estimation

Consider the following threshold stochastic regression model:
yr = Byxel(zs < 1) + Boxel (2 > 1) + &4, (2.1)

where x; = (1,%41,...,Ztp)’, I(-) is the indicator function, z is the threshold
variable that controls regime switching according to the value of the threshold r,
and 37 and B2 are the coefficients. The innovation &; is a real-value martingale
difference with respect to an increasing sequence of o-fields F; generated by
{(xj+1,zj+1,€5) : § < t}. Let 8 = (By,B5,7)" denote the parameter, whose true
value 8y = (B9, B, 70)’- Throughout the paper, r is assumed to lie in the
bounded subset [r, 7] and B19 # Bao-

For simplicity, we first introduce some notations. Let y = (y1,..-,Yn)’, € =
(€1, €n)s 2 = (21, 20) and I(a < z < b) = (@i5),, 4 pyry With aij = I(a <
z; < b). Denote X = (x1,...,%p), X1(r) = X xI(z < r) (ie., a = —oc0) and
Xo(r) = X xI(z > r) (ie., b = c0), where ‘*’ denotes the Hadamard product

operator of matrices. Then, model (2.1) can be reformulated in matrix form
y =Xa1(r)B1 + Xa(r)B2 + & (2.2)

Given the sample y,X and z, our aim is to estimate 8. For each fixed r,
model (2.2) is linear in B;’s and the application of the ordinary least-squares

principle yields the sum of squared errors function

Sa(r) = y'y — y'Xa(r)(Xa (r) Xa(r)) 7 X (r)'y — y'Xa(r)(Xa(r) Xa(r) 7 Xa(r)'y,
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from which r can be estimated as

7 =arg Tén[zinﬂ Sn(r)- (2.3)

For convenience, we consider an alternative objective function
Jn (1) = Sp — Sp(r), (2.4)

where S, = y'y—y'X(X'X)"!X'y. Note that X = X;(r)+Xz(r) and X;(r)'X;(r) =
0 for i # j € {1,2}. After simple calculations, it follows that

In(r) = (Ba(r) = Ba(r)) Xa(r) Xa(r) (X'X) X (r) X (r)(Ba(r) — Bu(r)),
where 3;(r) = (X;(r)X;(r))"1X;(r)"y for j = 1,2. Now, the optimization in

(2.3) is equivalent to

T = arg max_ Jyn(r). (2.5)

T€[r, 7]

Before discussing asymptotic properties of J,,(r), we first introduce two as-
sumptions.

Assumption 2.1 (i) The minimum eigenvalues of %X%XW and %)—Q]}_{n are bound-
ed away from zero in probability as n — oo for any n > 0, where X, =
X*xI(ro—n<z<r) and X, =X *I(rg < z < 1o+ 7).

(ii) The threshold variable z; has a positive density on [r, 7.
Assumption 2.2 As n — oo,
i) sup |£X1 () X1(r0) — Grarg| 20,
(i) sup [3Xa(r)Xa(ro) = {(G — Gr) = (Gro = Grary)}| 50,
(ii1) sxelg (12X (r)e| + |1 Xa(r)e]) B0,

r

where Gy is a symmetric and positive-definite matriz, which is absolutely con-
tinuous and strictly increasing in x, with G_o =0 and G = G, and 7 Arg =

min{r,ro}.

Assumption 2.1 requires that there are enough observations in the neigh-
bourhood of the threshold 7o so that it is identifiable. Assumption 2.2 is a
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type of condition related to the uniform law of large numbers, which holds if
{(x¢, zt,€¢) } is strictly stationary and ergodic with finite second moment and z;
has a continuous distribution. See, e.g., Lemma 1 in Hansen (1996). In particu-
lar, when model (2.1) is a self-exciting TAR model, if {y;} is strictly stationary
and ergodic with Ey? < co and the density of y; is continuous and positive on
R, then Assumptions 2.1 and 2.2 hold with G, = E{yt_ly,’t_lI (yt—q < z)} and
vi-1 = (1, Yt—1, .-, Yt—p)’; see Chan (1990, 1993).
By Lemma 2.1 with m = 1 in Gonzalo and Pitarakis (2002), we have

Theorem 2.1 If Assumptions 2.1-2.2 hold, then

sup Inlr) _ J(r)| 20,
r€lr, 7 n

where J(r) is a non-stochastic continuous function over the interval [r, 7| defined

by

J(r) =PI{G7"/\roGr_1 + (Gr/\ro - Gro)(G - Gr)vl}(G - GT)G—I G,
X {G;lgr/\ro +(G - Gr)_l(Gr/\ro — Gy }p

with p = P10 — Bao- U
Furthermore, the above J(r) is unimodal.

Theorem 2.2 J(r) is strictly monotonically increasing in [r, 7] and strictly

monotonically deceasing in [rq, 7).

Proof. Using the expression of J(r) and the symmetry and positive definiteness

of G, we have, after some calculations,
J(r) = J(5) = p'(G ~ Grp){(G = Gr) ™' = (G — G5) ' HG — Girg)p > 0
for r < s <r<rp, and
J(r) = J(s) = p'Gro{G; " — G 1}Gryp < 0

for rg < s < r < 7. Thus, the result holds. il

A common definition is as follows: a function f(z) is said to be unimodal if there exists a real
number m so that it is monotonically increasing for z < m and monotonically decreasing for z > m.



THRESHOLD MODEL: NeSS ALGORITHM 7

From Theorems 2.1 and 2.2, we conclude that J,(r)/n is monotonically in-
creasing in [r, rp] and monotonically deceasing in [rg, 7] with probability tending
to one as the sample size goes to infinity. To illustrate Theorem 2.2, we next give
four examples.

Example 2.1 Consider the threshold regression model:

_ { Bro + Puze +e, if 2 <o, (2.6)

Bao + Porxs + ¢, if 2 > 1o,
where {(zt, z¢,€¢)'} is i.i.d.; z1, z and & are mutually independent; e; has zero
‘mean and finite variance o2; T, has zero mean and finite variance o2; the density
of z is continuous and positive in the neighbourhood of ro, and P19 # P or

P11 # Bo1-

It is not hard to see that Assumptions 2.1 and 2.2 hold. By calculation, we have

G, = diag(1,02)F,(r), where F,(-) is the cumulative distribution function of z,
and

J(r) = {(Bro — B20)? + 02(B11 — Ba1)*} J*(7),

where

— T 2
70 = P - ) (Pt + Bl )

Figure 1 gives the curves of J*(r) when 2z is Cauchy distribution with ro =1
and when z; ~ UJ0,1] with 7 = 0.4, respectively. From Figure 1, we can see
that J*(r) is unimodal, and so is J(r) since J(r) is proportional to J*(r).

Example 2.2 Consider the threshold regression model:

01Ty + ooz &, i T <1
’yt:{ 1L¢1 2L¢2 t) f tl1 > 70, (27)

prxi1 + Poxsa + €5, if Ta1 > 10,
where (a1 — P1)ro # 0, {(ze1, Te2,61)'} is i.i.d., ¢ ~ N(0,1) and independent of

(@41, Tt2)" which is bivariate normal with mean zero and covariance matriz

o?  poioo
>N =

2
poioy 0y
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Figure 1: The curves of J*(r) in models (2.6) when z is Cauchy distribution with
ro = 1(left) and U[0, 1] with ro = 0.4 (right), respectively.

Using the fact z12|z11 ~ N(p%xu, (1 - p?)o2), we have

o2h(x/o1) poiozh(z/o1) 7
Gz = ?
porosh(s/or)  (1— P)odd(z/o1) + pPo3h(z/on)

where h(z) = ®(z) — (2r)~Y?zexp(—2%/2) and &(z) is the cumulative distri-
bution function of standard normal. Figure 2 shows the curves of J(r) for the

following two cases:

4 7 1 -0
@i)- E:<7 25) and ro =1; (ii). E:(_03 00253)and'r0:0

with p = (a1 — f1, 02 — B2)’ = (1,0.5)". From Figure 2, we can see that J(r) is

unimodal.
Example 2.3 Consider the piecewise constant TAR model:

Yyt = aol(ys—1 < o) + ol (ys—1 > o) + &, (2.8)
where ¢ ~; ;.4 N(0,1).

From Li, Ling and Tong (2012), we know that model (2.8) is always strictly
stationary. Let F(z) = P(y; < ). Then it follows that
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Figure 2: The curves of J(r) in models (2.7) for the case (i) (left) and the case (ii)
(right), respectively.

Fla) = — 20— Po)B@ —00) | {1 2(ro — c0)}o(z — o)
1—®(rg — ag) + @(ro — o) 1 — ®(ro — o) + (70 — o)’

where ®(z) = P(e; < z). A simple calculation yields that

2
J(r) = (Bo — a)? {F(ga;‘o) + F(T/l\ioirzrl;(m)} F(r){1—F(r)}.

Figure 3 (a) shows the curve of J(r) in model (2.8) with (v, fo,70) = (-1, 2, 0.7)
for r € [—4, 5]. Clearly, J(r) is unimodal.

Example 2.4 Consider the TAR model:

1—0.3y:_1 + 0.50;_ s <1,
yt:{ 0.3ys—1 +0.5y:—2 +¢&¢, if ye2 < 2.9)

—1+0.6ys—1 — 0.3yz—3 +¢€¢, of y—2>1,
where € ~;;q4. N(0,1).
For this TAR model, J(r) has no closed form, but we can simulate it by Theorem

2.1. Figure 3 (b) shows the simulated curve of J(r) by 50 replications each with
sample size 2000. Clearly, J(r) is unimodal.




10 DONG LI AND HOWELL TONG

(@) (b)

2.0 A

0.5

0.0

Figure 3: The curves of J(r) in models (2.8) (left) and (2.9) (right).

3 Nested sub-sample search algorithm

Suppose the sample y, X and z is available. Clearly, J,(r) is a step function,
namely Jn(r) = Jn(z)) for r € [2(5), 2(i41)), where 21y < ... < z(y) is the order
statistics of {z1,...,2n}. We adopt the approach of Tong and Lim (1980) by
considering the empirical percentiles as candidates for the threshold values. The
SGS algorithm maximizes J(r) defined in (2.4) over the feasible set {z(1), ---, Z(n) }
by enumeration. To get the global maximizer of J,(r), the required number of
least squares operations is n.

Now, we propose a new algorithm and call it the nested sub-sample search
(NeSS) algorithm since the feasible set shrinks by a half after each iteration. The
idea is simple. We shrink the nested feasible set step by step and finally maximize
Jn(r) over a small feasible set by enumeration so that it is expected to save
computational costs. Specifically, suppose the initial feasible set is {2(1, .- Z(n) }-
We first maximize Jn(r) over the subset {2y, 2(2k); ---» Z(qk) }» Where k = [n/(q +
1)] and [a] is the largest integral part of a. Then we get the maximizer z(; r) for

some jo S {1, ceny q} and a new feasible set (Z((jo—l)k)a z((j0+1)k)) n {Z(l), ceny z(n)}.
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Repeat the procedure above by updating the feasible set. After m steps, we get
a feasible set that contains [2™n/(q + 1)™] candidates out of {z(y), .-, 2(»)} and
over which we maximize J,(r) by enumeration. Thus, the total required number
of least squares operations is about mgq + [2™n/(g + 1)™]. If, in the last step on
maximizing J,(r), the required number of least squares operations is not beyond
5, which is a pre-assigned positive integer, that is, [2™n/(g + 1)™] < §, then the

number m of iterations satisfies

log(5%)
" log(%3h)
Thus, the total required number of least squares operations is about
q ‘ n
lo + 9. 3.10
log(%4%) 1) 310

Since the minimizer of ¢/ log((g+1)/2) in (3.10) over the set of positive integers
is 3, we take ¢ = 3. As for the choice of §, we can set § = 50 empirically when
sample size n > 200. If the sample size is less than 200, we can set § = 85 or use
the SGS algorithm to get the estimate 7 since the computational cost is not high

in this case. Figure 4 gives the total required number of least squares operations

75 4
@ CmE— -
K asa—
s c———
2 70 1 -
o -
8 -
g -
g -
% 65 -
3 -
% -
Y -
é -
4 @
s 60 s
B )
= [ ]
g )
© 55 @
o
o
T T T T T T
0 2000 4000 6000 8000 10000
Sample size

Figure 4: The total required number of least squares operations in (3.10).

in (3.10) after taking the ceiling function when § = 50 and the sample size varies
from 100 to 10,000.
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Summarizing the above discussion, we have the following algorithm:

NeSS algorithm

Given the initial feasible set § = {zq), ..., 2(n) }

while (#§ > 6){ ‘
calculate g=quantile(§, c(0.25, 0.5, 0.75)) and J,(g[7]) for ¢ = 1,2, 3;
if (Jn(g[1]) > max{Jn(q[2]}, Jn(a[3])})
§ + 3% < qf2]]
else if (Jn(g[2]) 2 max{Jn(q(1]), Jn(a[3D})
§ < Slall] < F < qf3]]

else
T+ 35 > q[2]]
}

Maximizing J,(r) over § and then getting 7. O

Generally, the cardinality of § obtained in the last iteration is less than & so
that it is possible that there are not have enough data for us to get the genuine
global estimate 7. For example, suppose we set § = 50 and § = {z(51), ey z(120)}
in the penultimate step. Clearly, #§ = 70 > 6. Then we further shrink the
feasible set according to the above algorithm and get the final feasible set §, =
{%(68) -+ 2(103)} (for example) with #5, = 36. For this case, we had better
extend 5§, forward and backward equally so that its cardinality equals §. For
example, §, can be extended to §y = {z(ﬁl), ey 2(110)}.

Finally, we should mention that the Fibonacci algorithm, which is optimal for
optimizing deterministic unimodal functions in numerical analysis, is not optimal

for optimizing J,,(r) due to its randomness.

4 Simulation studies

To assess the performance of our algorithm in finite samples, we conduct sim-
ulation studies, using sample size n = 200, 400, 800, 1600 and 3200 for model
(2.9) and model (2.7) with (e, 09) = (0.5,1.2), (B1,52) = (—0.5,0.7), o = 1,

(ibﬂ, xtg)' ~ N(O, E) with
4
Y= ’ .
7 25
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In all simulations, the innovation &; ~; ;4. N(0,1). The program is written in R.
For threshold regression models, like model (2.6) and (2.7), the program in R by
Hansen (2000) is available on the website:

http://www.ssc.wisc.edu/ bhansen/progs/ecnmt_00.html.
For TAR models, the SGS algorithm is available by calling the function tar in
the package TSA in R; see Chan and Ripley (2012).

Table 1 reports the total elapsed time in optimizing J,(r) for model (2.7)
by the SGS and our algorithm with 100 replications, as well as that for model
(2.9) by tar. Here, we search for the estimate of o within the 90% inner sample
range and set § = 50. From Table 1, we can see that the NeSS algorithm saves
substantial time when the sample size is large.

Table 1: Total elapsed time (in seconds) for 100 replications.

Model n 200 400 800 1600 3200

Model (2.7) SGS 262 6.26 20.62 61.90 211.62
NeSS 083 111 228 3.00 5.52

Model (2.9) tar 6.46 1231 24.23 48.88 100.93
NeSS 134 2.05 348 652 15.13

To examine whether the NeSS algorithm and the SGS algorithm can produce
an identical global maximizer of J,(r) or not, we define the matching rate as the
ratio of the total numbers of times that the two algorithms produce the same
maximizer to one thousand in 1000 replications. The matching rates are reported
in Table 2. From Table 2, we can see that the NeSS algorithm and the SGS have
identical matching rates when the sample size n > 200. We also did simulations
for n = 100. For model (2.7), the matching rates are both still 1. However, for
model (2.9), the matching rate is 0.992 for NeSS, which is very close to 1. Of
course, when n < 200, we can use either the SGS algorithm or the tar directly
since the computational cost is not high.

The program is run on a personal computer with a 3.30GHz Intel® Core(TM)i3-3220 CPU, 4GB
RAM and 64-bit Operating system.
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Table 2: Matching rate in 1000 replications.

Model 200 400 800 1600 3200
Model (2.7) 1.000 1.000 1.000 1.000 1.000
Model (2.9) 0.999 1.000 1.000 1.000 1.000

5 Concluding remarks

This paper has developed a new algorithm that can search for an estimate of
the threshold parameter within the framework of threshold stochastic regression
models, at a substantially faster rate than all existing algorithms that we are
aware of. Its validity has been supported theoretically and its reliability demon-
strated numerically.

In the literature, the maximum likelihood estimation (MLE) and the least
absolute deviations estimation (LADE) are also considered for threshold models.
Usually they are obtained by the SGS algorithm; see, e.g., Caner (2002) and Yu
(2012). In this case, we can use the NeSS algorithm instead to get the LSE of
the parameter as the pre-estimate or to initiate the optimization of the object
function to get the MLE or LADE of the parameter. The NeSS algorithm can
also be applied to T-CHARM of Chan et al. (2014) and multivariate threshold
models studied by Tsay (1998).

For multi-threshold stochastic regression models (e.g., Ertel and Fowlkes
(1976), Liu, Wu and Zidek (1997), Gonzalo and Pitarakis (2002), Li and Ling
(2012)), we can use the NeSS algorithm to obtain a sequential estimate of the
multiple thresholds, one at a time, by the NeSS algorithm. However, it is known
that the limiting distributions of such a sequential estimate is different from that
of a joint estimate. If our particular interest is in getting a joint estimate of all

thresholds, then how to reduce the computational burden remains a challenge.
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