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1 Introduction

This paper focuses on univariate time series, although many of the key ideas are

also relevant for multivariate time series.

The initial idea of threshold models in time series analysis was conceived

around 1976 and the conception was announced in my contribution to the dis-

cussion of the paper read by Drs (now Professors) Lawrance and Kottegoda to

the Royal Statistical Society in London in 1977. The baby’s birth was certified

in Tong (1978). I read Tong and Lim (1980)1 to the Royal Statistical Society

at the discussion session organised by the Research Committee on 19th March

1980. The paper has distinguished itself by having no serious theorems but being

perhaps rich in ideas, some of which are yet to be explored. In particular, it ad-

dresses the important issues of ‘WHY’ and ‘HOW’: (1) Why is a nonlinear time

series model needed? The paper listed deficiencies of linear Gaussian time series

models in respect of limit cycles, time irreversibilty, amplitude-frequency depen-

dency, phase transition, chaos, deeper insights and others. (2) How to do it?

1The paper states on p.245 that Sections 6 (simulations) and 9 (real data) are due to both authors

while the other sections are due to the first author.
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Recognizing the infinitude of nonlinear models, the paper proposed the thresh-

old approach and listed the following objectives: (i) statistical identification of an

appropriate model should not entail excessive computation; (ii) the model should

be general enough to capture some of the nonlinear phenomena mentioned pre-

viously; (iii) one-step-ahead predictions should be easily obtained from the fitted

model and, if the adopted model is nonlinear, its overall prediction performance

should be an improvement upon the linear model; (iv) the fitted model should

preferably reflect to some extent the structure of the mechanism generating the

data based on theories outside statistics; (v) the model should preferably possess

some degree of generality and be capable of generalization to the multivariate

case, not just in theory but in practice. Although the paper attracted 17 discus-

sants at its reading, it did not attract many followers for the next 17 years. In

fact, even with the publication of Tong (1983) and Tong (1990), the threshold

approach had to wait till the late 1990s before it started its exponential growth.

On looking back, evidence suggests that it has achieved all the objectives,

with the exception of the second part of objective (v); the generalization to mul-

tivariate time series remains an unconquered challenge. To-date, the threshold

approach has been adopted, sometimes with enthusiasm, in many branches of so-

cial, natural and medical sciences. Hansen (2011) has given an extensive review

of threshold autoregression in economics by reference to 75 papers published in

the econometrics and economics literatures, many of which are themselves highly

cited. Stenseth (2009) has summarized the importance of the threshold autore-

gressive model for understanding the structure of ecological dynamics. Unfortu-

nately, exchanges of experiences between disciplines have not been as widespread

as they should be.

My reflections will focus on several specific issues concerning the develop-

ment of threshold models in their various forms, namely the decision theoretic

underpinnings of the threshold approach in Section 2; conditional distribution for-

mulation versus stochastic difference equation formulation in Section 3; smooth

threshold models versus (unsmooth) threshold models in Section 4; change points

over time and over state in Section 5; threshold unit root and catastrophe in Sec-

tion 6. I conclude in Section 7.
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2 Decision theoretic background

Let {Xt : t = 0,±1,±2, · · · } denote a time series in discrete time and for sim-

plicity of discussion assume that the ‘true’ model is

E(Xt|Xt−1 = x) = µ(x)x,

where µ is a ‘smooth’ function. From a purely deterministic perspective, we can

approximate the function µ arbitrarily closely by a series of step functions on

invoking the Weierstrass theorem, as described in Tong and Lim (1980). Oper-

ationally speaking, we can consider at least two different ways to approximate

µ. Splines built on pre-fixed knots are an obvious candidate. Despite the many

desirable properties of the spline approach, the knots (i.e. the change points)

and the sub-intervals are generally a numerical device without substantive inter-

pretation. Moreover, there is the question of model parsimony. An alternative is

to let the observed time series inform us on the number of knots/change points.

The threshold approach (sometimes called the threshold principle) advocated by

me is precisely one such alternative. In this approach, the knots/change points

are called thresholds and the sub-intervals regimes. Tong (1982) argued that we

usually approximate µ with some purpose in mind, e.g. forecasting, control, fil-

tering, etc. A natural setting to proceed is to apply the Bayesian decision theory

by starting with an approximation in the form of a Bayesian linear model with

Gaussian belief:

E(Xt|Xt−1 = x) = θx,

θ ∼ N(c, V ).

The closeness of the approximating linear model to the ‘true’ model is measured

by the loss function that is conjugate to the Gaussian distribution, namely

L(θ) = h[1− exp{− 1

2k
(θ − µ)2}],

where h and k are positive real constants. Note that to decide whether or not

the approximating linear model is acceptable we need to evaluate the expected

loss EV (δ) of making the decision δ (of shifting from c to c + δ) from the class

of possible decisions D. In many practical situations, it is not unreasonable to

suppose that

V (δ) = α+ β|δ|,
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where α, β > 0, to reflect the assumption that a bold decision increases the

uncertainty of belief. In other words, we would not expect to have to make drastic

adjustment to the value of θ for a ‘smooth’ function µ. Define the expected loss

function EV (δ) by

EV (δ) =

∫ ∞

−∞
L(θ)dFV (θ|δ), δ ∈ D,

where FV (θ|δ) denotes the distribution of θ given that the decision δ is employed.

Here, FV (θ|δ) is N(c+ δ, V ), and

EV (δ) = h[1− (
k

k + V
)
1
2 exp{−[2(k + V )]−1(δ − µ+ c)2}].

Smith et al. (1981) showed that the minimizer of EV (δ) with respect to δ, the

Bayes decision, is uniformly zero, meaning that no adjustment is needed2 , for

0 < µ(x)− c < {(1 + γ2)
1
2 − 1}γ−1, where γ = β(k + α)−

1
2 .

The above simple application provides the Bayesian decision theoretic un-

derpinnings of the threshold approach to nonlinear time series analysis. It is

curious that the Bayesian underpinnings have gone totally unnoticed in the time

series literature as well as the econometrics literature.

3 Conditional distribution formulation versus stochas-

tic difference equation

It is well known that there are two ways to write down a model for a stationary

real-valued Markov chain in discrete time, say {Xt : t = 0,±1,±2, · · · }. Besides
the popular stochastic difference equation, there is the alternative of using a

conditional probability formulation. For threshold modelling, Tong and others

have used the former formulation. See, e.g., Tong (1990, 2011). Wong and Li

(2002) adopted the latter formulation and proposed a mixture autoregressive

(MAR) model. Let F (xt+1|xs, s ≤ t) denote the conditional distribution of Xt+1

given the past history up to and including t. In its simplest form, an MAR model

may be expressed as

F (xt+1|xs, s ≤ t) = α1Φ(
xt+1 − a

(1)
0 − a

(1)
1 xt

σ1
)

2There were two typographical errors below equation (2.6) in Tong (1982), which are corrected here.
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+α2Φ(
xt+1 − a

(2)
0 − a

(2)
1 xt

σ2
),

where 1 ≥ αi ≥ 0, α1 + α2 = 1, σi > 0, a
(i)
0 , a

(i)
1 , i = 1, 2 are real constants, and

Φ denotes the standard normal distribution.

Let {Jt : t = 0,±1,±2, · · · } be a sequence of two-valued independent and

identically distributed (iid) random variables, independent of {Xt}, with P [Jt =

1] = α1;P [Jt = 2] = 1−α1. Then the MAR model is equivalent to the following

threshold autoregressive model:

Xt+1 = a
(Jt+1)
0 + a

(Jt+1)
1 Xt + σ(Jt+1)εt+1.

Tong (1983, pp. 63,96,97; 2011) has stressed the versatility of the indicator time

series {Jt}. Here, {Jt} is a hidden process. The possibility of extending {Jt}
from a hidden iid to a hidden Markov chain was mentioned in Tong and Lim

(1980, p.285 line-12). Hamilton (1989) had not referred to the above references

when he gave his development of the Markov switching model. In fact, prior to

Hamilton, Chan (1986, 1988) had used the hidden setup when he studied the

exponential autoregressive model of Lawrance and Lewis (1980).

A related issue is the reformulation of the MAR model as a stochastic differ-

ence equation with {Jt} observable. The following theorem is due to Rosenblatt

(1971). (See also Chan and Tong, 2002.)

Theorem (1): For a Markov chain {Xt}, there exist iid random variables {εt}
such that εt+1 is independent of σ{Xs : s ≤ t} and σ{Xs : s ≤ t + 1} =

σ{εt+1, Xs : s ≤ t}.

The proof involves the following construction, which is sometimes called the

Rosenblatt construction. Denote the conditional distribution function of Xt+1

given Xt by Ft(xt+1), and Ft(Xt+1) by Ut+1. Obviously, Ut+1 is uniform on (0, 1).

Now,

Xt+1 = F−1
t (Ut+1) = Q(Ut+1, Xt),

where Q(Ut+1, Xt) is the conditional quantile corresponding to F given Xt. Note

that the Us are independently generated random variables from U(0, 1). To refor-

mulate an MAR model, we therefore need to evaluate F−1
t (Ut+1). Unfortunately,

in general there is no closed-form expression for the quantile of a mixture of two
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Gaussian distributions.

4 To smooth or not to smooth?

Chan and Tong (1986) proposed the smooth threshold autoregressive model and

gave it the acronym STAR after the acronym TAR for the threshold autoregres-

sive model. It takes the following form:

Xt = a0 +

p∑
j=1

ajXt−j + (b0 +

p∑
j=1

bjXt−j)F (
Xt−d − r

z
) + et,

where r is a real constant, z ≥ 0, d (an integer) ≥ 1, p (an integer) ≥ 0, {et} is a

sequence of iid random variables with zero mean and finite second moment, et is

independent of Xs, s < t, and F is a continuous distribution function. Here, the

real positive parameter z controls the smoothness of the function F such that a

very small z corresponds to a steep switching of F at the threshold r. A popular

choice of F , leading to the so-called LSTAR model in the econometrics literature,

is, in its simplest form,

F (x) = (1 + e−x)−1.

Chan and Tong (1986) proved essentially the following theorem, which shows

that the STAR model includes the TAR model as a special case.

Theorem(2): Suppose {et} is absolutely continuous with a bounded and uni-

formly continuous density function. Suppose {Xt} is ergodic and strictly sta-

tionary. Then, for each z ≥ 0, the invariant distribution of {Xt,z} is absolutely

continuous with density function denoted by gz. Moreover, gz(y) is continuous

in y, uniformly bounded and equicontinuous over z. Also, gz → g0 everywhere

as z → 0.

They noted that the proof of Theorem 2 can easily be adapted for any

sufficiently smooth function F with a rapidly decaying tail. This covers the

other popular choice of F in econometrics, namely the so-called ESTAR model:

F (x) = 1− e−zx2
, z > 0.

They also proved the central limit theorem and the law of the iterated loga-

rithm for the least squares estimates of unknown parameters of the STAR model,
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and studied the forecasting of the STAR model. In STAR modelling, the impor-

tance of giving the standard error of z cannot be over-emphasized. Chan and

Tong (1986) gave the value 0.084 as their least squares estimate of the z parame-

ter in their STAR model for the Australian blowfly data. They were conscious of

the implications of its standard error which they gave as 0.045. As pointed out

in Tong (2013), the implications are that ‘unless there is a priori reason (e.g.,

from some underlying economics theory) or there is a large amount of data in

the neighbourhood of the slope change, the choice between a STAR model and

a TAR model is often a matter of convenience. The crux of the matter is that

while regime change may be discernible in practice, the precise functional form

of the change is a different story.’

Since the turn of the 21st century, a few econometricians have taken up the

STAR ideas with much vigor, partial comprehension, frequently no acknowledge-

ment and mysterious re-labeling of the letter T from threshold to transition. In

their vigorous push of STAR modelling to the econometric community, sufficient

caution has not always been exercised.

Recently, Ekner and Nejstgaard (2013) have re-examined two published ap-

plications of STAR models in the literature. After a careful re-examination of

the profile likelihood function of z−1 of the STAR model fitted by Teräsvirta et.

al. (2010) to the Wolf’s sunspot numbers (1710-1979), Ekner and Nejstgaard

(2013) found that ‘the global maximum is actually the TAR model’ whereas the

STAR model adopted by Teräsvirta et al. is only a local maximum. Ekner and

Nejstgaard also re-examined the model fitted by van Dijk et al. (2002) to the

U.S. male unemployment rate (1968:6-1989:12). They found that for the STAR

model, the profile likelihood of the γ parameter (equivalent to z−1) is rather flat

and the maximum occurs at a rather large value of γ. They suggested that ‘a

large and imprecise estimate of γ implies that the LSTAR model is effectively a

TAR model.’

In reality, both the TAR model and the STAR model are most likely wrong

models. A more relevant issue is how to estimate the parameters of a wrong model

because the likelihood approach is typically predicated on the model being true.

Although results are available concerning maximum likelihood of mis-specified

models, e.g., White (1982), I would argue that a systematic non-likelihood based
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approach to fitting a wrong model deserves much more serious attention. For

some recent attempts, see, e.g., Davies (2008) and Xia and Tong (2011). Such

an approach can be very rewarding. For example, using a simple TAR model of

order 3 for the Wolf’s sunspot numbers, Xia and Tong (op. cit.) have demon-

strated substantial improvement in terms of the fit of the sunspot cycle as well

as the prediction performance for varying horizons, if the conventional likelihood

function, which is a functional of one-step-ahead prediction errors, is replaced

by a non-likelihood approach based on a functional of all-step-ahead prediction

errors.

In fact, evidence suggests that even a substantive model can be wrong. An

effective non-likelihood approach stands some chance in exposing the inadequacy

of a substantive model. Xia and Tong (2011) have given an example.

5 Change points over state and over time

Change points over state and over time correspond to nonlinearity and non-

stationarity respectively. They are also called structural breaks, which have at-

tracted much attention in the econometrics literature. See, e.g., Aue and Horváth

(2013) for a recent survey.

Consider the following example. Let et denote a Gaussian white noise with

zero mean and unit variance, and t0 be an unknown positive integer. Consider

Model A and Model B:

(A) Xt = et, if Xt−1 < 3; 10 + et otherwise;

(B) Xt = et, if t < t0; 10 + et otherwise.

Here, Model A, being a TAR model, has a change point at the state value 3

and is nonlinear, while Model B has a change point at the time value t0 and is

nonstationary. Now, given just one realization, it is almost impossible to distin-

guish between the two models. This means that at a deeper level, to distinguish

between nonlinearity (NL) and nonstationarity (NS) we may need more than one

realization.

What is in common between NL and NS is the existence of change points.

Therefore, to detect a change point is of particular relevance. For NS, we may

perform the detection of a change point over time by examining the data in
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their chronological order. For NL, we may first arrange the data in descending

(or ascending) order and perform the detection of a change point over states by

examining the order statistics. The order statistics idea was actually implemented

in FORTRAN codes in Appendix A10 and Appendix A11 in Tong (1983, pp 291-

292).3 Tsay (1989) apparently re-discovered this idea and called it arranged

autoregression.

The hypothesis-test-based detection of change points over time has a vast

literature, one of the most recent being, e.g., Dehling et al. (2013). For on-line

detection based on Akaike’s information criterion (AIC), see Ozaki and Tong

(1975) and Kitagawa and Akaike (1978). The possibility of adapting the above

procedures to detect change points over states is worth exploring. In this con-

nection, Tong (2013) has discussed the need and one way of revising the penalty

term in the application of AIC and its cousins when dealing with setups involving

nuisance parameters.

Now, to fit TAR models to a time series of sample size say n, the standard

method is based on a grid-search over the order statistics. However, this can

be quite time consuming because it requires O(n) least squares operations for

each trial TAR model. The situation is particularly serious for panel threshold

models. Consider the following TAR model of order p.

Xt = β′
1ξt−1I(Xt−d ≤ r) + β′

2ξt−1I(Xt−d > r) + εt,

where ξt−1 = (1, Xt−1, . . . , Xt−p)
′, I(·) is the indicator function, β1 and β2 are

(column) vectors of coefficients, and εt is a real-valued martingale difference with

respect to some increasing sequence of σ-fields generated by {(Xj , εj) : j ≤ t}.
Here, p ≥ 0 and d > 0 are integers temporarily assumed known, and r is an

unknown real constant that is assumed to lie in the bounded subset of the reals

[r, r]. For simplicity, let q = max{p, d},y = (Xq+1, . . . , Xn)
′, ε = (εq+1, . . . , εn)

′

and I(s) = (aij)(n−q)×(p+1) with aij = I(Xq+i−d ≤ r). Suppose we have the

sample {x1, . . . , xn}. Then the TAR model can be re-written (now replacing Xj

by the observations xj , all j) as

y = X1(r)β1 +X2(r)β2 + ε,

3Kung-Sik Chan contributed much to the construction of the FORTRAN codes.
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where X1(r) ≡ X ∗ I(r) and X2(r) ≡ X ∗ {I(∞) − I(r)} with X being an (n −
q) × (p + 1) matrix, whose i-th row is (1, xq+i−1, . . . , xq+i−p). Here, ‘∗’ denotes
the Hadamard product of matrices. Denote the parameter vector (β′

1, β
′
2, r)

′ by

θ and its true value by θ0. The TAR model is linear in βi’s and least squares

estimation gives the squared error function

Sn(r) = y′y − y′X1(r)(X1(r)
′X1(r))

−1X1(r)
′y − y′X2(r)(X2(r)

′X2(r))
−1X2(r)

′y,

from which we obtain the least squares estimate of r by

r̂ = arg min
r∈[r,r]

Sn(r).

Let

Jn(r) = Sn − Sn(r),

where Sn = y′y − y′X(X′X)−1X′y. Assuming that {εt} and {Xt} are both

strictly stationary and ergodic, EX2
t < ∞ and Xt has a continuous density that

is positive on the real line, Li and Tong (2013) have proved that

sup
r∈[r, r]

∣∣∣∣Jn(r)n
− J(r)

∣∣∣∣ p−→ 0,

and J(r) is strictly monotonically increasing in [r, r0] and strictly monotonically

decreasing in [r0, r] provided that β10 ̸= β20. The unimodality of J(r) can be

exploited to furnish a two-stage grid-search algorithm that reduces the compu-

tational cost of fitting models with change points to a level much below O(n).

Essentially, a crude search is followed by a fine search in the vicinity of a crude

minimum. However, the unimodality property is unlikely to hold where there are

two thresholds or more, for which case further research is necessary. One possible

way is to divide the order statistics into segments similar to the way that Ozaki

and Tong (1975) modelled nonstationary time series.

A member of the TAR model family is the open-loop TAR model (labeled

TARSO in Tong and Lim (1980), in which the input time series is an exogenous

time series. Much of the above discussion applies to a TARSO as well. Structural

breaks in multiple time series seem not to have attracted much attention. Since

a close-loop TAR model is a bivariate time series, it may be an obvious first

candidate for attention in this respect.
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6 Threshold unit root and catastrophe

Consider the simple TAR model

Xt = {αXt−1 + γ}I(Xt−1 < r) + {βXt−1 + δ}I(Xt−1 ≥ r) + εt,

where I(·) denotes the indicator function, and {εt} is a sequence of iid random

variables, with zero mean and variance σ2. This model is stationary and ergodic

if α < 1, β < 1, and αβ < 1. The behaviour outside this region is more delicate.

See Chan et al. (1985). Pham et al. (1991) studied the case γ = δ = a known

constant. Without loss of generality, let r = 0. Let (α0, β0) be the true value of

(α, β), and (α̂n, β̂n) be the least squares estimates of α, β. Pham et al. (1991)

proved that (α̂n, β̂n) → (α0, β0) almost surely if and only if one of the following

conditions holds:

α0 ≤ 1, β0 ≤ 1, γ = 0;

α0 < 1, β0 ≤ 1, γ < 0;

α0 ≤ 1, β0 < 1, γ > 0.

Moreover, for the case (α0, β0) lying on the boundary α0β0 = 1, α̂n is strongly

consistent.

As far as I know, Pham et al. (1991) was the first paper dealing with the

estimation of a non-stationary TAR model. They also coined the name nonlinear

unit root. Perhaps, it can also be called a threshold unit root, reflecting the fact

that the above conditions include cases of unit root in one of the regimes. When

both regimes have a unit root, the threshold unit root reduces to the conventional

unit root. Threshold unit roots opened the possibility of exploring regime specific

random walks. Ling (2009) attacked some of the unsolved problems mentioned

in Pham et al.(1991). Karlsen and Tjøstheim (2001) considered the unit root

problem in a nonlinear setting by way of null recurrent time series.

As I have repeatedly stressed, e.g. Tong and Lim (1980) and Tong (1990,

2011), the regimes of a TAR model can be defined in a very flexible way, so

that the modeller can delineate them to best suit his/her purpose. For example,

prompted by catastrophe theory, Tong and Lim (1980, p.283) used the following:

{Xt−1−Xt−2 ≥ 0, Xt−2 ≤ r1}∪{Xt−1−Xt−2 < 0, Xt−2 ≤ r2} as one regime and

{Xt−1 −Xt−2 ≥ 0, Xt−2 > r1} ∪ {Xt−1 −Xt−2 < 0, Xt−2 > r2} as another. Note
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that, on letting r1 → ∞ and r2 → −∞, this model includes, as a special case,

the momentum-TAR model used by Enders and Granger (1998) to characterize

asymmetric growth rates as in monthly or quarterly unemployment rates; they

called Xt−1 −Xt−2 momentum.

7 Concluding discussion

Not all the ideas and aspirations in Tong and Lim (1980) have been fully explored

in the literature. Let me mention a few that might be relevant to econometrics.

(1) It is conceivable that in a nonlinear economic system, structural breaks may

be associated with what is called jumped resonance in nonlinear oscillations.

In a nonlinear system driven by a periodic force, the output may exhibit sud-

den jumps as the frequency (or amplitude) of the driving force gradually in-

creases/decreases. Simulated examples of jumped resonance are shown in Tong

and Lim (1980, 252-254). Note that the jumps can occur at different frequencies

depending on whether the driving force is increasing or decreasing. This may

have very interesting economics interpretations. I am not aware of any system-

atic exploration of the phenomenon in the statistical time series literature or in

econometrics.

(2) TAR models for multivariate time series are still in their infancy. While

open-loop and close-loop threshold autoregressive systems (Tong and Lim, 1980)

are early attempts, some fresh ideas and powerful optimization algorithms are

still badly needed. Recently, panel time series analysis has been attracting much

attention in the econometrics literature, (e.g., Baltagi, 2008). However, it seems

that the threshold idea is only beginning to filter into this exciting area. See,

e.g., Mitchell et al. (2012). In this regard, it is perhaps pertinent to draw

attention to experiences in ecology. Stenseth et al. (1999) studied common

dynamic structure of Canadian lynx populations within three climatic regions.

Chan et al. (2004), found that the lynx data over Canada share similar dynamics

in the decrease phase but they appear to be different in the increase phase. Yao et

al. (2000) studied common threshold structure in panels of short ecological time

series. Essentially, they showed that the mink-muskrat interactions shared some
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common structure across 81 trapping stations in Canada. For further ecological

experiences, see Stenseth (2009).

(3) Although conditional heteroscedasticity was recognized by TAR models not

later than Tong and Lim (1980), a systematic development is available only re-

cently in Chan et al. (2013), due to early pre-occupation with the conditional

mean function. On hindsight, this represents a belated opportunity to model

volatility from the threshold perspective. Be that as it may, exciting possibili-

ties are still available. One of the many advantages of the threshold approach

to volatility, under the acronym T-CHARM, is that only very mild conditions

need to be imposed on the model parameters, unlike the situation with GARCH

models. In its simplest form, a T-CHARM is given by

Xt = σ(Xt−1)ηt,

where {ηt} is a sequence of iid random variables (not necessarily Gaussian) with

mean zero and unit variance, and the function σ(x) is piecewise constant. Thus,

Xt is a dynamic and interpretable mixing of distributions of possibly different

variances. Recall that mixtures of distributions are a well tried way of modelling

heteroscedasticity. The simplest form of σ(x) is

σ(x) = σ1I(x ≤ r) + σ2I(x > r), σ1 > 0, σ2 > 0,

where I denotes an indicator function and r is a real constant, the threshold.

Let ρk denote corr(σ2(Xt), σ
2(Xt−k)). Chan et al. (2013) showed that the above

T-CHARM is stationary and

ρk = {Pr(σ2ηt > r)− Pr(σ1ηt > r)}k.

Note that on the parameters σ1 and σ2, only positivity is needed and no fur-

ther condition is necessary to estimate ρk. Contrast this with the well-known

GARCH(1,1) model

σ2(Xt) = σ2
t = α0 + (αη2t + β)σ2

t−1,

where α0, α, β are all positive. For stationarity, we need to impose α + β < 1,

under which ρgk = (α + β)k. (The suffix g is added to signify the GARCH

model.) Note that while ρgk is always positive and monotonically decreasing,
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ρk is more flexible in that it can also alternate between positive and negative

values. It is well known that to estimate ρgk, a fourth moment condition is

needed: 2α2 + (α+ β)2 < 1, which is quite restrictive and can cause problems in

applications. Chan et al. (2013) gave an example with real data.

(4) Another area that has not attracted as much attention as it deserves is

the threshold moving average model or more generally threshold autoregres-

sive/moving average model. For some recent attempts, see, e.g. Li et al. (2012)

and the references therein. It should be recalled that the famous Exponential

Weighted Moving Average filter is rooted in a moving average model and that

Evgeny Evgenievich Slutsky created the moving average model in his famous

paper in 1927 as an approach to business cycle theory. Will a threshold moving

average model throw deeper insights on business cycles?
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