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Abstraqt

We study a testing problem of homogeneity in gamma mixture
models. Tt is found that under consistency of the penalized maximum
likelihood estimator there is a proportion of the penalized likelihood
ratio test statistic that degenerates to zero. The limiting distribution
of the statistic is found to be the chi-bar-square distributions. The de-
generation is due to the negative definiteness of a complicated random
matrix, depending on the shape parameter under the null hypothesis.
In light of this dependency, bounds on the distribution are introduced
and a weighted average procedure is proposed. Simulation suggests
that the results are accurate and consistent, and that the asymptotic
result applies to the maximum likelihood estimator, obtained via an
Expectation-Maximization algorithm.

Key Words: Chi-bar-square distributions, gamma mixture, likelihood ra-
tio, maximum likelihood, negative definite

1 Introduction

In recent years, gamma mixture models have seen a surge of applications in
many fields. Craig and Strassels (2010) examined the out-of-pocket prices
of analgesic medications using a two-component gamma mixture model. See
also Mayrose et al. (2005) for applications in bicinformatics and the references
in Liu et al. (2003). Due to their importance, developing effective and handy
statistical procedures for gamma mixture models is an imperative task, in
particular for the test of homogeneity. An obvious way of approaching the
problem is to use the ordinary likelihood ratio test (LRT). One of the few
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results available is Liu et al. (2003). The authors showed that when the range
of some parameters is unbounded, the LRT statistic diverges to infinity at a
rate of loglogn and that its asymptotic behaviour is of extreme-value type
through a highly complex piece of stochastic analysis. However, their simu-
lation results suggested that the limiting distribution is far from converging
to the extreme value distribution and that a possible solution is to simulate
the finite-sample null distribution. The peculiar behaviour of the statistic
arises because the maximum likelihood estimator (MLE) of a component of
the mixture model fails to converge. See, for example, the asymptotic result
for Ry, (g;I) in Chen and Chen (2001). Related problems in general mixture
models were also addressed by Ghosh and Sen (1985) and Chen and Chen
(2001). These authors showed that the asymptotic distribution involves the
supremum of a Gaussian process. See also Liu and Shao (2004) in normal
mixture models. However, there are several shortfalls of the above results.
Firstly, the results lose their appeal because the functional form of the statis-
tic with respect to the stochastic process is difficult to compute (Chen et al.,
2001). Secondly, the divergence to infinity is so slow that it is not detected
in simulation and that the convergence to the extreme value distribution is
hardly detectable (Liu et al., 2003; Liu and Shao, 2004). Lastly, Hall and
Stewart (2005) provided a theoretical analysis on the reduction of power
against alternative hypotheses regarding the above results.

"The consistency of the MLE in the testing problem has not been solved
until the introduction of a clever penalized procedure proposed by Chen et al.
(2001). The authors innovated the modified likelihood ratio test (MLRT) by
incorporating a penalty function. The MLRT was also developed by Chen
and Kalbfleisch (2005) in normal mixture models and further extended to
an EM-test by Li et al. (2009) and Chen and Li (2009). Exact theoretical
results have been obtained in some special cases. For densities with a sin-
gle parameter of interest, the MLRT statistic has the limiting distribution
0.5x3 + 0.5x% (Chen et al., 2001; Li et al., 2009). For the normal mixture
model, the statistic has x3 when the means and the variances are unequal
and unknown (Chen and Li, 2009). Conceivably, the MLRT falls into the
type II likelihood ratio problem (Lindsay, 1995, Section 4.4) which gener-
ates the chi-bar-square distributions of which some are parameter-dependent
limiting null distributions. The above result in the normal mixture models
returns to the x7 distribution due to parameter identifiability. Qin and Smith
(2006) investigated an extension of the MLRT in multivariate normal mix-
ture models. The authors showed the asymptotic null distribution being the
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chi-bar-square distributions and suggested it must be found using numerical
methods. In many other mixture models, such as the gamma mixture models,
the results 0.5x2 +0.5x2 or x2 cannot be applied directly without theoretical
justifications. The general testing problem has not been completely solved
and remains as a long-standing open problem. Charnigo and Sun (2004) ac-
knowledged the generalization of the MLRT to higher dimensional problems
and suggested the corresponding null distribution be simulated. However,
the extension is not at all straight forward as presented in this paper and
simulation of the null distribution in the absence of a closed-form expression
should no longer be tolerated. A clear guideline has been long overdue for
practitioners in the rejection or retention of the homogeneity assumption.
The purposes of the paper are to fill this research gap in gamma mixture
models and to explore how the limiting null distribution depends on the
parameters.

Motivated by the above needs and the importance of the gamma mix-
ture models, this paper aims at investigating the limiting distribution of
the MLRT statistic. Given consistent penalized MLE we obtain the con-
dition under which the MLRT statistic degenerates to zero and determine
the proportion of degeneration. Then, we can show that the asymptotic
null distribution has parameter-dependent chi-bar-square distributions. This
subsequently establishes a foundation for quick model selection using the
X2 distribution in practice. Moreover, in light of the popular Expectation-
Maximization (EM) algorithm for parameter estimation in finite mixture
models, we demonstrate through intensive simulation studies that our re-
sults can be applied to the likelihood ratio statistic evaluated at the MLE
obtained via the EM algorithm.

The article is organized as follows: In Section 2, we present the asymptotic
results. Section 3 lists a number of considerations in the applications of the
results. The asymptotic analysis is supplemented by simulation in Section 4.
Section 5 presents two data examples and Section 6 gives a conclusion.

2 Asymptotic Results

We consider a two-parameter gamma, density function

F@50,8) = —— el Be, 50,

I'(a)



where o > 1 and 8 > 0 are shape and scale parameters, respectively. Given
a set of independent and identically distributed data, we are interested in
testing the homogeneity hypothesis Hy against the alternative hypothesis of
a two-component gamma mixture model H; where

Hy: f(z) = f(z;0,0);
Hy:f(z) = 7nf(z;01,B)+ (1 —7)f(z;00B),

and 0 < m < 1 is a mixing proportion. In this paper, we study a very
general testing problem that the parameters under the hypotheses are all
unknown and unequal. This is completely different from the setting in Liu
et al. (2003). For parametric hypothesis testing problems it is customary to
use the ordinary LRT based on the statistic which is defined as

LR, =2 {L (7r &1,51,@2,,5’2) .y (0.5,&,3,&,3)} :

where
L (W: A, ﬂl: Qa, 162) = Z log {Wf (SL'“ al)ﬁl) + (1 - ’/T) f (mh g, IBZ)} (1)
i=1

is the log-likelihood function and 6 is the MLE of parameter 6. It is well
known that the consistency of the MLE, obtained by maximizing (1) directly,
is not guaranteed. See for example Ghosh and Sen (1985); Hathaway (1985);
Chen and Chen (2001). This motivates a penalized procedure coined by
Chen et al. (2001) based on a modified log-likelihood function

L? (7T, ay, ﬂla Qa, 52) =L (7T, ai, 1317 g, 62) + Ck)g {47T (1 - ﬂ-)} 3 (2)

where c is a positive constant corresponding to the level of modification. An
alternative penalty function clog(l — |1 — 27|) was suggested by Li et al.
(2009). However, this suggestion seems to fail in our study as the penalty
is too severe as found in simulations. More details will be given in Section
4. Denote by 67 the penalized MLE of ¢ obtained by maximizing (2) given
a suitable value of c. We refer to Theorem 1 in Chen et al. (2001) for the
consistency of g7. The MLRT statistic is

LRE =2 {LP (wp &, P, 62, “2) (0.5,&,5,&,8)} . 3)



We study the asymptotic distribution of LR? which can be expressed as
LRP = LR, — LRy, in terms of the true parameter (co, Bo) under Ho, where

LRO'n. = 24L (057 &731&75) - L(05a agp, ﬁﬂaa()uBO)} 3
LR%l)n = 24LF (ﬁ—pvéﬁ), A:fvdzné?z)) - L(057 (]!0,,80,01(),,30)} .

An immediate asymptotic approximation for LRy, is

n n -1 n
<7’L—1/22 Y;T> (n—lz Y;Y;T> <n“1/22 Y;) +op (1) ,
i=1 i=1 i=1
where Y is a random vector given by

—TM () + log Bo + log X; }
Y, = . ’ 4
{ aofy T Xi ( )

and T™® (@) = d*InT (o) /d*a. In Appendix A, we derive the following
asymptotic approximation for LR},

n [ -1 n
(n—l/z Z }/ZT> <n—1 Z Y;Y;T> (n—l/Z E Y;)
i=1 i=1 %

-1

g==]

(5)

if n=1/2%"" U, is non-negative definite, where

n n -1
W; = (Z Zi:)’zy;-T) (Z Yﬁ’?) Y — Z;ys,
=1 =1

¥y # 0 is the solution to (37, WiW'iT)“l S U = I, Ip is the two-
dimensional identity matrix,

n

n -1
U= 2~ ViZ, Vi= <Z 13-"") (ZYfY}> Y; (6)
j=1

j=1

and Z; is a symmetric random matrix whose elements on the top left, top
right and bottom right are, respectively

Zipy = —T@ (ap) + {-TY (ag) + log o + log Xi}2 :
Zing) = '361 + {"F(l) (a0) + Bo 'i; log Xi} (040/30-1 - Xi) ; (7)
Zigy = —aofy” + (o' — X;)".
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The random quantity V; is scalar. If n=2/23"" U, is negative-definite, W;
are taken to be zero resulting in LRE = 0,(1). Under Hy, Y; and Z; are
random with mean zero. Then, by the central limit theorem , n~1/2 Yoo Wi
converges to a bivariate normal random vector with mean zero. We summa-
rize the results in the following. Under H,, the asymptotic distribution of
LRE, degenerates to zero with a weight 0 < p < 1 and has a 2 distribution
with a weight 1 — p where p is the probability that the matrix n=%/23"7"  U;
is negative-definite and Uj is defined in (6). That is,

LRE ~p+(1-p)x5 (8)

for large n. The limiting distribution in (8) is known as the chi-bar-square
distributions (Johnson et al., 1994, pg. 454). A more precise expression for
p will be derived in Section 3.2. Hence, the above result will be restated by
(10) indicating clearly the dependency on the shape parameter.

3 Practical Considerations

3.1 Estimating p

From the definition of U; in (6), we observe its dependence on the random
vector Y¥; and the random matrix Z; given by (4) and (7), respectively, which
are related to the parameter (o, fy) under Hy. In addition, the estimate of
p may also depend on n as the random matrix concerned involves a sum-
mation over n random matrices. As a rough visualization of the relations
between these variables, we simulate n random variables from f (z; avg, By),
compute Y;, Z; and U;, and evaluate the proportions in 10000 replications
that n=¥/23""  U; is negative definite. Denote by p, (o, Bo,n) such a pro-
portion. Fig. 1 displays two plots of ps (c, Bo,n) at some selected values of
ag, Bo and n. The left panel shows three series of p; (ag, Bo,n) against aq
at m = 1000, each series corresponding to different values of By. There is a
decreasing trend of p; (ag, fo,n) as oy increases, this trend being invariant
in By. The right panel shows another three series of p; (a, o, n) against
og at By = 2, each series corresponding to different values of n. Similar
decreasing trend of p, (o, fo, n) against ayg is observed. In addition, the val-
ues of ps (o, Bo, n) get lower at larger sample sizes and seem to converge to
some certain level as n grows. Overall, p; (cv, B0, 1) seems to decreases as
oy increases, but remains constant as 5y varies. Its possible convergence as
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Figure 1: Plots of weight ps (aq, Bo, n) against ag. The left panel shows three
series of By = 2 (0), Bo = 6 () and By = 2 (A). The right panel shows three
series of n = 100 (0), n = 500 () and n = 1000 (A). The solid line depicts
the asymptotic weight p (ap).

n tends to infinity motivates further investigation. Last, it is worth pointing
out some merits of the simulation technique. Apart from quick and easy
construction of the weight estimate, its use in the construction of a lower
bound in finite samples will be outlined in Section 4.

3.2 Asymptotic p

We require some general conditions on Y;, Z; and the products of their ele-
ments. In particular,

nD VY = M, oY YinZi— v
i=1 i=1
in probability for j = 1,2, where Y;j;; denotes the jth element of vector Y;.
The expression of each of the elements in matrices M and v are given in
Appendix B. Denote by Uspy), Uing) and Uspeg, respectively the elements on
the top left, top right and bottom right of U;. By the central limit theorem,
the vector on the left-hand side below

¥zA
Zi=1 Ui[ll] 011 012 013
-1/2 n
n~Y Yo Uing | =7 N30, | 012 022 023
Y1
Zizl Uilzz) 013 023 033

converges, as n — 00, to a random vector denoted by ST = (51, Ss, S3) having
a trivariate normal distribution N3 with zero mean vector and covariance
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matrix whose elements are

o1 = 2{1‘(2) (ao)}z + T (ag) + o {T® (%)}z {1 - agT® (ao)}——l ;
012 = |=2T'® (ag) +T® (a) {1 — aeI'?) (ao)}—l] B

015 = |2 + ag'® (o) {~1 + cI'® (ao)}_l} 57
o = [~1+T® (ag) {~1 + afT'® (a0)}] {~1 + 2ol ® (a0)} ™ B3
093 = -—20{0 -+ {—1 -+ Ol()r(2) (OfO)}_l] ﬁ6—37

033 = C.\{O [2 + 20 + {1 — opl'® (0‘0)}—1] '664'

Hence, the negative-definiteness condition implies that p can be approxi-
mated by the following probability asymptotically

0 oo szsfl
P ({Sl < O} N {815'3 - S% > O}) = / / / ’ g (81, 8o, 53) ngdSzdSl,
~00 J ~00 J —00 (9)

where g (1, S, 83) is the density function of the above trivariate normal dis-
tribution. The probability can be easily evaluated by numerical integration
using, for example, Wolfram Mathematica®. It is important to observe that
the integral is independent of fy. This can be easily verified by simple trans-
formation in the integration. Hence, the probability may precisely be denoted
by p (ap) and the result in (8) is more appropriately written as

LR ~ p(ag) + {1 —p(o0)} x5 (10)

A more precise description of the relation of p (ag) as g varies can be ob-
tained by (9). Fig. 1 overlays a curve of p (o) against ap for 1 < o < 10.
Its match with the simulated weight p (o, Bo, ) suggests that the mysteri-
ous dependency of the proportion of degeneration on the shape parameter is
further illustrated. An astounding observation is that p (ap) is small at some
large values of ag. An example p (12)=0.0497 suggests that the x2 distribu-
tion is quite accurate to approximate the asymptotic null distribution. In ad-
dition, as an empirical rule of thumb, we may use that p (ap) < p (1) =0.1345
and p (cp) > 0 to develop a lower bound D;, and an upper bound Dy for the
statistic LRE

Dy, < LRE < Dy, Dy ~0.1345+ 0.8655x2, Dy ~ x> (11)

as a quick guideline. Given a significance level, Hy is retained if the observed
MLRT statistic falls below the critical value evaluated by the above lower
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bound, and is rejected if it is above the critical value based on the upper
bound.

3.3 Weighted Average Procedure

The previous subsections demonstrate the theoretical analysis to the testing
problem. However, practical implementation of (10) encounters a drawback
that the value oy is unknown. A possible solution is to substitute this value
by the parameter estimate, for instance, the maximum likelihood estimate
& under Hy. Then, the weight p (ap) is estimated by & through (9) and the
asymptotic null distribution is established as in (10). However, the substitu-
tion may suffer a certain degree of bias because all prior beliefs are placed on
&. Lindsay (1995) suggested the use of the least favourable null distribution
by employing the least favourable critical value within a confidence interval
for aiy. However, the problem remains unsolved if the observed test statistic
falls below this least favourable critical value.

In light of the above difficulties, we propose a weighted average procedure
to accommodate the estimation error. It is well-known that & — ag is asymp-
totically normal with mean zero and variance v (ag) = n" g {——1 + al'® (ao)}"l.
Then, r candidates of agy can be obtained from the normal distribution
through

k ook -1 (z—a) -
——/ {27v (&)} exp{- 20 () }dm, k=1,...,r

r+1 o

provided that ag > 1. Each of these o forms an asymptotic null distri-
bution given by (8). The assignment of an equal weight to each agy leads to
the asymptotic null distribution

Pw (@,7) + {1 —pu (&)} x5, Dw(d,r)= - > plaok).
k=1

As illustrated in Fig. 1 the concavity of the weight in the shape parameter, the
weighted average procedure will give a weight slightly larger than the direct
substitution does. The effect of this finite-sample refinement is illustrated
in Table 1. The weights p,, (&,7) using n = 100 are slightly larger than
those using n = 1000 which are very close to the value obtained by direct
substitution p (&). Hence, this procedure tends to protect the null hypothesis
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Table 1: Weight p against o using weighted average procedure p,, (o, ) and
direct substitution p («). Different numbers of candidates r and the effect of
sample size n for the weighted average procedure are shown.
o Puw (@, 10) Puw (@, 20) p(a)
n=100 n=1000 n=100 n=1000
0.1023  0.1023 0.1023 0.1023  0.1023
0.0744  0.0743 0.0744  0.0743 0.0743
0.0612 0.0611 0.0613 0.0611  0.0608
0.0540 0.0536 0.0541 0.0536  0.0536
0| 0.0509 0.0497  0.0512 0.0497  0.0496

= 00 O & b

less when information from the sample is scarce. It is possible to impose more
protection on Hy by adjusting the assignment of weight. Moreover, the input
T seems less important compared to the sample size. We shall fix r = 10 in
data analysis in Section 5.2.

3.4 MLE obtained via EM Algorithm

Mixture models are getting popular in the statistics literature because of its
wide range of applications, including examination of homogeneity of popu-
lations, assessment of unimodality and identifications of clusters or outliers.
The introduction of the EM algorithm has further pushed up its popularity.
One of the appealing features of the ordinary LRT under regularity condi-
tions is the direct use of the two maximized log-likelihood functions under
each of the hypotheses. The MLRT does not have such convenience as it
will normally not be considered for parameter estimation of a mixture model.
Although the penalized procedure preserves the consistency of the estima-
tors under Hy, the loss of the above convenience may eclipse the use of the
MLRT. Another problem inherited in the MLRT is the possible reduction
of power under H; that arises from the penalty function. The discussion
about power will be deferred to Section 4. In light of this, we may use the
following conventional likelihood ratio as an alternative statistic

LREM, = 2{ L (7%, aP™ BPM, aPM, A2V - 1 (05,6,8,6,6) }, (12)
where §EM is the MLE of § obtained via the EM algorithm and itr is the
number of EM algorithm iterations given a suitable initial guess. This statis-
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tic not only preserves the convenience as the ordinary LRT does, but is part
of it also very common in the formation of AIC and BIC in mixture model
selection. We put forward this discussion because the EM algorithm may
share the possible estimator inconsistency as inherited in the ordinary like-
lihood ratio statistic. Therefore, the use of the aforementioned information
criteria may tend to reject Hy more often than they do under regularity con-
ditions. This is due to the peculiar behaviour of the log-likelihood function
under Hy. However, there are advantages in the use of LRE}, over the or-
dinary LRT which we should not overlook. They are outlined and a new
interpretation of result is proposed in the following.

In the rest of this subsection, we assume without loss of generality that
7 > 0.5. The argument in Chen and Chen (2001) points to the prob-
lem that in the ordinary LRT under Hy, the products (1 — #5M) &M and

(1 — #BM) BFM are consistent but not &£ and BEM . The EM algorithm
suffers similar problem except that it can never reach the boundary point of
7 and that the iterations will either slowly merge &F with &2 and SEM
with AEM or force #7M towards one (Lindsay, 1995, Section 3.4). Denote
by E; the former event that individual estimators are consistent and by Ej;
the latter event that individual estimators are not consistent. The advantage
of LRfo,{L is on the extremely slow convergence of the EM algorithm under
Hy. The occurrence of E; or Eyr can be easily observed as the iterations
proceed. If Ejr is observed, we may retain Hy in the absence of a tolerable
significance level; otherwise, large values of LR}, may suggest rejection of
Hj according to (10) conditional on Ej. Precisely,

LR35 | Er ~ p(a0) + {1 = p(a0)} X3 (13)

as n — 0o. The number of iteration ¢tr may be determined based on some
stopping rules as outlined in Lindsay (1995). Our simulation results suggest
that when a suitable initial guess, such as the penalized maximum likelihood
estimate, is adopted, the increase in the likelihood function is not significant
as the iterative run proceeds. Hence, practitioners may pick a number of
LREM values after the EM algorithm has insignificant changes and conclude
to retain or to reject Hy if these values yield consistent results. The above
suggestions essentially preserve the convenience in the use of likelihood-ratio-
type tests and avoid power deterioration in applications. The arguments and
suggestions in this subsection will be supplemented by the material lifetimes

example in Section 5.2.
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Table 2: Simulation results at selected nominal levels of 0.9, 0.95 and 0.99
using two homogenous gamma models.
Empirical significance levels for Hy : f (z;2,1)
0.90 0.95 0.99
n LRE  LREM | LR? LREM| LRE LREY
100 | 0.8856 0.8715 | 0.9402 0.9299 | 0.9862 0.9824
200 | 0.8943 0.8883 | 0.9476 0.9438 | 0.9888 0.9865
500 |0.8975 0.8966 | 0.9441 0.9431 | 0.9889 0.9886
1000 | 0.9028 0.9026 | 0.9529 0.9524 | 0.9897 0.9896

Empirical significance levels for Hyp : f (z;8,1)
0.90 0.95 0.99

n LRE LREM | LRE LREM | LRE LREM

100 | 0.8927 0.8793 | 0.9437 0.9338 | 0.9879 0.9842

200 | 0.8956 0.8886 | 0.9440 0.9400 | 0.9857 0.9839

500 | 0.8947 0.8936 | 0.9468 0.9460 | 0.9907 0.9903

1000 | 0.8953 0.8948 | 0.9465 0.9459 | 0.9894 0.9893

4 Simulation

We have conducted an extensive simulation study to evaluate the accuracy
of the results. Due to the dependency of p(ag) on ay, it is interesting to
conduct simulations using different values of o and holding f; = 1 with
a number of sample sizes. The first statistic under study is LRE given by
(3). It is the MLRT statistic with ¢ = log50 in the penalty function in
accordance with the recommendations in Chen et al. (2001). We also consider
the penalty function log50log (1 — |1 — 27|) suggested by Li et al. (2009).
The penalty appears to be so severe that even when the constant is reduced
from log 50 to 0.1, convergence is not always successful. There are failure
loops that the initial guesses iterate to itself. For example, when ap = 2
and n = 500, the failure rate is 0.5354. The second statistic LRJ7, given
by (12) uses the likelihood ratio evaluated at the MLE obtained via the
EM algorithm. The extremely slow convergence in the EM algorithm makes
simulation studies tedious. Lindsay (1995) pointed out that the solution of
the likelihood equations can depend greatly on the initial values. Therefore,
we use the penalized MLEs as initial guesses and carry out ten iterations.
We report the empirical sizes obtained from 10000 replications. Two sets
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Table 3: Proportions of zero statistics and simulated weights ps (ao, Bo, )
using four homogenous gamma models. The asymptotic weights for the four
cases are p (2) =0.1023, p (6) =0.0576, p (8)=0.0536 and p (12)=0.0497.

Hy: f(z;2,1) Hy: f(z;6,1)

n LR, LREM p,(2,1,n)| LRE, LR ps(6,1,n)

100 | 0.1195 0.1195 0.1636 | 0.0516 0.0516 0.0925

200 | 0.1258 0.1258  0.1596 | 0.0484 0.0484 0.0839

500 |0.1206 0.1206  0.1382 | 0.0542 0.0542 0.0763

1000 | 0.1225 0.1225  0.1301 | 0.0545 0.0545 0.0649

Hy: f(z;8,1) Hy: f(z;12,1)

n LR, LREM p,(8;1,n)| LRE LREY p,(12,1,n)

100 | 0.0465 0.0465  0.0731 | 0.0349 0.0349 0.0578

200 | 0.0470 0.0470 0.0674 | 0.0324 0.0324 0.0439

500 |0.0384 0.0384 0.0592 | 0.0336 0.0336 0.0357

1000 | 0.0444 0.0444  0.0473 | 0.0297 0.0297 0.0259

of simulation are illustrated in Table 2. Other sets using different values of
oy share similar results and hence are not reported. The agreement between
the theoretical results and the simulation results is obvious. Improvements
are generally obtained when we increase the sample size. The simulation also
shows the dependency of p (ag) on . In Table 3, we report the proportions
of zero statistics obtained from the simulation and the weight p, («g, B, )
obtained from simulation in Section 3.1, and the asymptotic weight p () is
in the caption. First, it is interesting that both statistics LR? and LR
result in the same figures. This implies that the EM algorithm no longer
increases the likelihood value under the occurrence of degeneration. Second,
it is obvious that the asymptotic analysis leading to p (ag) agrees quite well
with the simulation results of LR and LRI, This consistently justifies
one of the main results of this paper that the degeneration arises from the
negative-definiteness of the random matrix. The relatively weak approxi-
mation in the sample size of 100 can be explained by the relatively weak
second-order approximation given by (5). Lastly, the value ps (ao, fo,n) is
the largest when the sample size less than 1000. We may replace the lower
bound given by (11) by ps (a0, o, n) if smaller as a more refined benchmark
in finite-sample situation.

Some insights on the power of the tests can be gained. We consider a

13



Table 4: Average values of test statistics under alternative hypotheses.
Hyon Hyg Hys Hie Higs  Higs
LR? 576.1 487.5 780.4 43.54 61.82 61.82
LREM | 884.3 783.7 781.2 43.79 76.23 76.21
Hior  His - Hiog Huo Hun  Hip
LRP 470.8 129.0 3414 62.63 1249 61.82
LR | 5585 140.8 342.2 62.72 125.6 74.64

number of gamma mixture models which are either entirely different in mix-
ing proportion, shape and scale parameters or with some of these parameters
being equal. Each of the following alternative hypotheses is formulated to
test against Hy

H101 : 02f (.’Zt; 8, 1) + 08f (5[;; 2, 4) 3 H]_()g : 08f (.’17; 8,1) + 02f (.’L‘, 2, 4) 3
Hyo3: 0.5f (2;8,1) + 0.5f (2;2,4); Hios:0.5f (z;8,4) +0.5f (z;2,1);
Hyos : 0.2f (2;8,1) + 0.8f (z;2,1); Higg: 0.2f (z;8,4) + 0.8f (z;2,4) ;
H107 : O2f (3.'5, 8, 1) -+ 08f (CE, 8, 4) N HlOS : O2f (SL', 2, 1) -+ 08f (ZL', 2, 4) 3
Higg : 0.5f (2;8,1) +0.5f (z;8,4); Hy10:0.5f (2;2,1) + 0.5f (z;2,4);
H111 : O5f (a:, 8, 1) + 05f (IL', 2, 1) 3 Hllg : 05f ($, 8, 4;) + 0. 5f (IL', 2, 4:) .

Every simulation experiment consists of 10000 replications, each of sample
size 1000. We find that the upper bound xZ given by (11) is extremely efficient
in the testing process. Almost all simulated test statistics of LR?, and LRE
are greater than the critical values of the 3 distribution. The powers are all
equal to one at significance levels 0.9, 0.95 and 0.99 except for the test of Higq.
In this particular case, the statistic LR gives powers of 0.9999, 0.9997 and
0.9985 at the corresponding significance levels, whereas LR, ylelds powers
of 0.9999, 0.9997 and 0.9987. A moderate improvement in terms of power
is obtained using the EM algorithm which increases the likelihood value at
each cycle in the iterative sequence (Dempster et al., 1977). Meanwhile, the
penalty function in the MLRT may suffer despite slight reduction in power.
A more concrete picture about power can be obtained by comparing the
values of the test statistics. In Table 4, we report the average test statistics
in 10000 replications for each of the alternative hypotheses. The averages of
LR10 ", are always higher that the use of LR10 ", achieves higher power.
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5 Data Example

5.1 Danish Fire Loss

This example is based on the Danish fire loss data set which consists of
2157 losses exceeding one million Danish Krone from the years 1980 to 1990
inclusive. It is well known that the data set has a heavy right tail in the
extreme value literature (Embrechts et al., 1997). The adequacy of the ho-
mogenous gamma model which has a moderate tail is suspected. We apply
the proposed results and methods to see if a two-component gamma mix-
ture model will improve the fitting with further verifications, justified by
some goodness-of-fit measures. McNeil (1997) provided a time series plot
to check for clustering of large losses and a sample mean excess function to
determine heavy-tailed behaviour. The results suggest the validity of the
independence assumption and the possibility in modeling excesses over high
thresholds using the generalized Pareto distribution. Recently, Wong and
Li (2010) proposed a threshold model incorporating the generalized Pareto
distribution for excesses and a Weibull distribution for the rest of the obser-
vations. This threshold model flexibly gives a global fit and an appropriate
tail modeling. These two findings suggest that the loss data are likely to be
independent but from a heterogeneous population.

The maximum likelihood estimate of a gamma model is (54, ﬁ) = (1.299, 0.382)

with a corresponding maximized log-likelihood of -4752. In the gamma mix-
ture model, the penalized procedure and the EM algorithm give

(ﬁp,&l,,é{’,&g, 37) = (0.5098,15.68,10.09,1.226,0.2040) ;
(ﬁEM,&{EM,B{W JGEM BEM) —  (0.2816,1.256,0.1619,10.19,6.036)

which yield the values of test statistic of 1829 and 1978, respectively. The
evidence for the mixture model is overwhelming as both statistics are far
greater than the critical values of the x2 distribution at any reasonable sig-
nificance level. Further support for this is a goodness-of-fit assessment based
on probability-probability plots as shown in Fig. 2. The gamma mixture
model provides a much better fit as the plot exhibits obviously a straight line
pattern. This example lends further support to the asymptotic distribution
in (10), improvement in power through the use of LRZ%‘,{L, and demonstrates
the simplicity in implementation.
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Figure 2: The probability-probability plots. The left panel shows the plot of
the fitted gamma model and the right panel shows that of the fitted gamma
mixture model using the EM algorithm. A 45-degree straight line is given
for reference.

5.2 Material Lifetimes

Gamma distributions give useful representations of a number of physical sit-
uations such as random processes in time. We consider a set of 101 observa-
tions for the lifetime of an aluminum sheet under maximum stress of 21,000
psi. A brief description and the data listed in increasing order are available
in Birnbaum and Saunders (1958). The authors demonstrated a realistic
adjustment to exponential models in representing lifetimes in a life-testing
situation. Therefore, it is interesting to check the redundancy of a mixture
structure in the representation. More insight may be gained by applying our
results in studying the date set.

The parameter estimate of a gamma model is (&, ﬁ) = (11.86,0.008462).
In the gamma mixture model, the penalized maximum likelihood estimate of

(ﬁp,&’;, . &z, Bg) = (0.5001, 22.82, 0.01457, 10.26, 0.008307)

leads to a value of the MLRT statistic of 2.387. A lower bound of the p-
value evaluated through (11) is 0.3032, larger than any reasonable size of
a statistical test. In the absence of ay under Hy, direct substitution and
the weighted average procedure yields p (&)=0.0495 and p,, (&, 10)=0.0518,
respectively. The corresponding p-values are 0.3393 and 0.3377. The use of
the penalized estimates initiates the EM iterative sequence. A series of 1000
iteration steps seems to indicate the occurrence of event E;; that individual
estimators are not consistent as shown in the left panel of Fig. 3 in which
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Table 5: Estimation results of the EM algorithm for the Material Life Data.
The p-values are calculated using (13) based on (a) direct substitution and
(b) weighted average procedure.

itr Parameter estimate LRﬁf”;’L p-value
(#50, 6™, BPM, a2, BE ) )
10 | (0.5048,22.73,0.01452,10.25,0.008307) 2.389 0.3390 0.3374
50 | (0.5222,22.20,0.01425,10.15,0.008262) 2.397 0.3378 0.3362
100 | (0.5446,21.53,0.01389,9.999,0.008175) 2.408 0.3362 0.3346

Estimate of mixing proportion in cach iterative run Likelihood ratio statistic in each iterative run
1 g -
5 3
o E 08 é 6
g 806 @
5E e 44
B w004 [£]
=8 et 7
& £02 £
'06 0 L : { :g 0 + . L |
0 200 400 600 800 1000 - 0 200 400 600 800 1000
Number of iterations Number of iterations

Figure 3: The EM estimate of the mixing proportion (Left) and the statistic
LREM (Right) in each iterative run.

itr,n

#PM increases slowly to one as the iteration moves on. Evidence in favour
of Hy is obvious. On the other hand, the behavior of LRE%L is agonizing, in
particular as #5M is closer to one that a jump in the test statistic is observed
in the right panel of Fig. 3. The AIC criterion starts to reject Hp in the
833th iteration whereas the BIC criterion and the statistic LR%‘,{L at 5%
significance level consistently suggest retention of Hy in all 1000 iterations.
However, the insignificant increase of the statistic in the first 600 iterations
suggests early termination of the EM algorithm. Therefore, the suggestions
in Section 3.4 are useful. We can consider a number of the test statistics
in different iterative steps and apply (13). The results reported in Table 5
consistently suggest the retention of Hy in agreement with the method of
MLRT.
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6 Conclusion

We investigate the modified likelihood ratio test for homogeneity in two-
component gamma mixture models. We have found that the limiting distri-
bution of the test statistic is the parameter-dependent chi-bar-square distri-
butions given by a degeneration to zero with weight p (ag) and a chi-square
distribution with two degrees of freedom with weight 1 — p (c). This weight
is related to the negative-definiteness of a complicated random matrix de-
pendent on the shape parameter of the homogenous gamma model. An
asymptotic approximation using a trivariate normal probability has been de-
veloped for p (). All these theoretical results have been revealed through
an extensive simulation to be very accurate and reliable.

In applications, the shape parameter is unknown. Based on the behaviour
of p (), we have developed a lower bound for the retention of the homoge-
nous hypothesis and an upper bound for the rejection. The bounds have
been proved to be extremely useful in simulation and in two real examples.
In a rare occasion that the observed test statistic falls between the bounds or
if practitioners require an evaluation of p-value, we recommend the weighted
average procedure which takes into account the estimation error of the shape
parameter. This procedure has yielded consistent results in a study of the
Material Life data.

Due to the popularity of the EM algorithm in the analysis of mixture
models, we recommend the likelihood ratio test statistic evaluated at the
maximum likelihood estimates obtained via the EM algorithm. There are
some appealing advantages including the preservation of the convenience of
the conventional likelihood ratio test procedure and in the prevention of
power reduction. The fact that the EM iterative sequence converges slowly
allows the selection of a number of observed test statistics. Decision may
therefore be based on these statistics by comparing the derived asymptotic
null distribution conditional on the consistency of individual estimators. We
have demonstrated that this approach has a better power in simulation. Its
simplicity and convenience has also been illustrated in the real examples.

A number of interesting insights have been obtained on the form of the
asymptotic null distribution and on its practical implementation. We believe
many other mixture models share similar characteristics and this deserves fur-
ther research and discussion. In particular, the parameter-dependent struc-
ture of the limiting distribution may not be as simple as our situation in
which only the shape parameter is involved. Developing simple decision cri-
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teria such as bounds appears to be very challenging.
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A Approximation for LRY,

Define
1 3f (Xs5000,60) 1 32f(?§;;040,ﬁo) azf(;f;go,ﬂo)
Y= f (X3 ao, Bo) Mgﬁ_ﬂiﬂ) D L= f (Xi; o, Bo) 62f(Xi;io,ﬁo) Bzf()?;a‘i),ﬂo)
T3 0, Y0 aﬂ ) 0, ~0 aaaﬂ 62ﬁ

whose expressions for the gamma model are given by (4) and (7), respectively.
We follow Section 2.3 of Chen et al. (2000) that the resulting characterization
of LRY, involves the maximum of the following function

2 i §; — f: 62
i=1 i=1
plus o, (1), where
o= (57 V(2 ) a2
' B —Bo ' A B1—Bo ’ ,31—5%1
o= (525 ) v (528) 4(578 )
A re-parametrization using vector parameters y; and -y,, where

b ] e  URT LR

leads to
LRY, = maxq(y,72) + 0, (1),
Y172
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where
n

n 1 1 2
q(m,7) =2 ; (vf Yit 5 Zm+m Zm) Zl (’ripYi +5HIZM Y, Zm) :
From Lemma 1 in Charnigo and Sun (2004) and Lemma A2 in Li et al.
(2009) that 47 = O, (n~/2) and by the strong law of large numbers that
ny r  Zi =0, (1). It follows that

LR]lon = Iax q* (r)/la 72) + Op (1) b //,
Y172 W
where e L
= 2
" () =2 Z {Yi 4+ Ziva) — Z (M Y+ Ziva) "
i=1 i=1

The maximum value of ¢* (v1,72) is (5) excluding the term o, (1).

B Asymptotic weight p (o)

Denote the matrices M and v; by

-1
M = M1 Mya . o Vji1 Vg
- ) UJ - X )
M1z Ma2 Vji2  Uj22

where
— Bo . . BEr®(ag) |
mu = M’ M2 = e ®(ag)) 1022 = Tl'f&—ol“(T@«J’
Vil = re (040) v = 05 V122 = ﬂz,
vo11 = 05 Vg1 = Eng Uggp == —73‘1-
Then, we express Uyp1), Ui and Uifag by
Ui i[11] = z[ll] Y‘[l] (mn’Uln + mlz’Uzu) - Yi[z] (mlzvm + m22U211) )
Uing) = Zipz) — Yipn (Ma1vi1a + miava1a) — Vi (Magviia + maguara) ;

Ui[22] = Zi[22] - 3’;[1] (m11U122 + m12U222> - Yi[z] (m12U122 + m22’0222) .

The result in Section 3.2 follows from the central limit theorem and the
covariance maftrix is obtained by

o1 012 013 E(UinyUipy) £ (UingUipng) B (UipyUipey
o12 022 023 | =4 E(UinglUing) E (UipgUing) E (UipgUipey
013 023 033 E U1[11]U1[22] E U1[12]U1[22] E U1[22]U1[22]
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