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Discussion of ‘An analysis of global warming in the Alpine region
based on nonlinear nonstationary time series models’ by Battaglia
and Protopapa

I would like to congratulate warmly Professors Battaglia and Protopapa on
their most timely and stimulating paper.

Before I turn to the statistical aspects of the paper, please allow me to
play the devil’s advocate and pose some deliberately provocative scientific
questions. As everybody knows, global warming is the hottest topic in town,
attracting some of the best brains in the scientific world. It is universally
accepted that there is undisputed evidence of large increase in the mean
temperature globally over the past 200 years or so. However, is the claim
that the increase is ‘very likely due to human activities’ really rock solid?
Does it not require further evidence before non-human factors, e.g. natural
variability of earth’s climate, can be ruled out? Of course, if we had a
time series of global temperature stretching back to the appearance of homo
sapiens on earth or perhaps even earlier, as well as an equally long time
series of C'Oy emission, then the claim could be tested more readily and the
conclusion more definitive. In the absence of these (-I could be wrong about
the absence), we can try and identify some suitable proxies. Now, can the
authors tell us if proxies of the length mentioned above are available? I have
tried to no avail.

Turning to the statistical aspects of the paper, I find many interesting ideas
in the paper. However, due to limitation of space, I shall focus on just some
of them as follows.

(1) The Threshold Nonstationary-Nonlinear Time Series Model:

We clearly have here a strong candidate for serious consideration of inclu-
sion in the armory of nonstationary-nonlinear modelling. The idea of piece-
wise linearity is now well accepted since Tong and Lim (1980), although the
widespread acceptance took much longer than I had anticipated. As for non-
stationarity, the idea of sectional nonstationarity can be traced at least as
far back as Ozaki and Tong (1975), which was further developed by Akaike
and Kitagawa (1978). Sadly, the idea still seems to be under-exploited in the
literature. Now, by a natural marriage of the two ideas, we have a new baby,
namely the threshold nonstationary-nonlinear time series model. The baby
was conceived at no later than Tong (1983), who reported, on page 273, the
fitting of just one such model to the famous Nicholson’s bi-daily counts of
(living) blowflies kept inside a cage and subject to protein limitation. The
model consists of a 2-regime self-excited threshold AR (or SETAR) model to
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the first 126 bi-daily observations and a linear AR model to the later 82 bi-
daily observations. The threshold model admits a limit cycle, which accounts
for the population cycles of the blowflies under protein limitation, while the
switch to a linear AR model in the later period is consistent with the ento-
mological theory of selection of autogenous fly after approximately one year
of captivity so that less or no protein is required for egg production, thereby
leading to the loss of cycle-generating mechanism with many eggs unhatched.

It gives me real pleasure to see that the baby is beginning to grow into a
powerful man (-being Chinese, I ignore gender impedimenta) under the care
of our authors, who have provided him with a genetic algorithm.

(2) Nonstationarity vs Nonlinearity:

I agree with the implicit premise of the authors that the real world is nonsta-
tionary and nonlinear. However, to model these two features simultaneously,
one of the first fundamental challenges is this: Can we always tell if a given
single realization comes from a stationary nonlinear time series model or from
a nonstationary linear time series model? A simple example will illuminate
the situation. Let &, be iid N (0, 1) random variables and ¢, a positive integer.
First, consider Model (NL):

Xt = &¢, if Xt—l S 3, 10 + Et, if Xt—l > 3.
Model (NL) is clearly nonlinear and stationary. Next, consider Model (NS):
X; = 6t,ift < ty; 10+5t,1ft > 1.

Model (NS) is clearly linear but nonstationary. In practice, given a single
realization, it is almost impossible to tell from which of the above two models
it comes. To illustrate the point, Professor Kung-Sik Chan has kindly simu-
lated Model (NL) as shown in the figure. He has also provided R codes, which
is appended below. For detail of the TSA library, see Cryer and Chan (2008).

R codes:

library(TSA)

set.seed(53975)

X=tar.sim(n=500, ntransient=0, Phil=c(0,0), Phi2=c(10,0), thd=3,
d=1,p=1,sigmal=1,sigma2=1)

plot (ts(X$y) ,ylab="X’ ,xlab="t’)

abline (h=3,col=’red’)
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Figure 1: A realization from model (NL); the red horizontal line shows the
threshold value.



The level shift models can easily be extended to cover changing trends by
simply noting that a linear trend becomes a level upon first differencing. The
above discussion suggests that some caution is needed when drawing conclu-
sions such as ‘...the genetic algorithm never selected a nonlinear structure.....’

(3) Model Complezity

The discussion in (2) has another ramification. Specifically, it raises the
question of how to count the dimension of the parameter space. Note that in
most order determination criteria (e.g. AIC, BIC, etc.), the P of equation (8)
is the number of independently adjusted unknown parameters. The key words
are ‘independently adjusted’. The discussion in (2) shows that the counting
is not as straightforward as it might appear at first sight. Another difficulty
in counting P arises from a non-standard situation, namely the absence of
nuisance parameters under the restricted model. To explain, let us follow
the notation of Tong and Lim (1980) and consider a 2-regime SETAR(2;1,1)
model with threshold r and zero intercepts. Let the parameters be 6;;7 = 1,2,
one for each regime. We have a total of 3 parameters. Consider the reduced
model with 0; = 0y, i.e. a linear AR(1) model. Now, in the reduced model,
the threshold parameter r is a nuisance parameter that is redundant (i.e.
absent). So, what is P here? The answer to this question is clearly related
to the choice of the value for ¢ in equation (8). First, note that the difference
of the AICs of two nested models is the corresponding likelihood ratio test
statistic minus twice the degrees of freedom (Tong, 1975). Now, if r is known,
then under normality assumption of the white noise process, the likelihood
ratio statistic of the test of the hypothesis of #; = #; has asymptotically a
X3. In this case, the standard AIC (i.e. ¢ = 2) applies. However, when 7 is
unknown, as is usually the case in practice, the above asymptotic argument
breaks down and the standard AIC does not apply. In fact, we have here a
stochastic process indexed by 7 of mutually dependent x? random variables.
Following the arguments of Chan and Tong (1990), it can be shown that the
5% point of the likelihood ratio test statistic is approximately that of a x32
under suitable conditions. For higher order AR models, see Chan and Tong
(1990).

(4) Miscellanies

(i) I am very grateful to the authors for their kindness in referring to Tong
and Lim (1980) in respect of hidden thresholding. In fact, in the early 1980s,
Tong and his colleagues already started to exploit TAR models driven by
hidden thresholds. For example, Tong (1983, p. 63) first revealed the con-
nection between the exponential autoregressive model of Lawrance and Lewis
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(1980) and a TAR model with a hidden threshold variable. Chan (1986, Ch.
4; 1988) developed the link more systematically. See Tong (2011, esp. p.110

and p.111) for further discussion of thresholding, observable, hidden or par-
tially hidden.

(ii) Rissanen’s quote in 2007 can be compared with the famous quote among
statisticians: 7 All models are wrong but some are useful.” (George Box,
1979.) It is a curious fact that, despite this almost universal recognition,
standard frequentist as well as standard Bayesian methods of statistical es-
timation of unknown parameters of a time series model are typically pred-
icated on the model being true. Even George Box has not deviated from
this practice. Of course, he and the late Professor G. Jenkins started the
specification-estimation-diagnostics strategy as their way of addressing the
issue. However, a frontal attack of the issue remains challenging. For a recent
attempt to remove this assumption at the estimation stage, see Xia and Tong
(2011), who proposed a ‘catch-all’ approach to estimation by considering an
objective function based on n-step-ahead predication errors for n > 1 rather
than for n = 1 only as in conventional methods. In fact, the celebrated
Whittle likelihood is a forerunner in this endeavour.

(iii) It seems to me that the notion of fitness in genetic algorithm is related
to Akaike’s likelihood of a time series model. (Akaike, 1978.)

(iv) I am very grateful that the authors have referred to Chan and Tong
(1986) in connection with STAR models. These models were first developed
by Chan and Tong (1986), who christened them smooth threshold autoregres-
sive (hence the acronym STAR) models. Chan and Tong (1986) gave a com-
prehensive probability theory and statistical inference of the STAR models.
Essentially, they replaced the indicator function in TAR models by a ‘suffi-
ciently smooth function with a rapidly decaying tail’ (Chan and Tong, 1986,
p.187). They did this in two steps. First they gave a comprehensive treat-
ment of the case of a distribution-type extension of the indicator function;
then they pointed out on p.187 that the same arguments could be repeated
for the more general case under virtually identical conditions. Thus, it is a
historical fact that the smooth transition autoregressive models (including
his LSTAR models and ESTAR models) that Terdsvirta proposed, bearing
the same acronym as STAR, in 1994 are special cases of Chan and Tong’s
STAR models of 1986. It is curious that this fact is not more widely known
in the literature. Of course, our priority does not detract from the many
worthwhile contributions made by Professor Terasvirta to STAR modelling
in econometrics. On hindsight, it might be better to adopt the engineers’ ter-
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minology and call our model a ‘soft threshold autoregressive model’, which
carries the same acronym.

In conclusion, I must thank the authors once again for a most enjoyable paper
and the Editor for giving me the opportunity to discuss it. The paper rep-
resents an important step into the vast territory of nonstationary-nonlinear
modelling and beyond. I say beyond, because I can almost envisage the pos-
sibility of a delightful nonlinear-nonstationary spatial-temporal model. After
all, like knowledge, climates travel in time and space.

REFERENCES
Akaike, H. (1978) On the likelihood of a time series model. The Statistician
27, 215-235.

Akaike, H. and Kitagawa, G. (1978) A procedure for the modelling of non-
stationary time series. Ann. Inst. Stat. Math. 30, 351-363.

Box, G.E.P. (1979) Robustness in strategy of scientific model building, Ro-
bustness in Statistics: Proc. of a Workshop, ed. R.L.Launer and G.N.
Wilkinson.

Chan, K.S. (1986) Topics in nonlinear time series analysis. Doctoral thesis,
Princeton Univ., USA.

Chan, K.S. (1988) On the existence of the stationary and ergodic NEAR (p)
model. J. Time Series Anal. 9, 319-328.

Chan, K.S. and Tong, H. (1990) On likelihood ratio tests for threshold au-
toregression. J. Roy. Statist. Soc. B 52, 469-476.

Cryer, J.D. and Chan, K-S. (2008) Time Series Analysis with Applications
in R. Second Edition, Springer.

Lawrance, A.J. and Lewis, P.A.W. (1980) The exponential autoregressive
moving average EARMA (p,q) process. J. Roy. Statist. Soc. B 42, 150-161.

Ozaki, T. and Tong, H. (1975) On the fitting of non-stationary autoregressive
models in time series analysis. Proc. 8th Hawaii Int. Conf. on System Sc.
Western Periodicals, North Hollywood, California, 225-226.

Tong, H. (1975) Determination of the order of a Markov chain by Akaike’s

6



information criterion. J. Appl. Prob. 12, 488-497.

Tong, H. (1983) Threshold Models in Non-linear Time Series Analysis. Lec-
ture Notes in Statistics, No. 21, Springer.

Tong, H. (2011) Threshold models in time series analysis-30 years on (with
discussions). Statistics and Its Interface 4, 107-136.

Xia, Y. and Tong, H. (2011) Feature matching in time series modeling (with
discussions). Statistical Science 26, 21-61.



Serial No.

482

483

484

485

486

487

488

489

490

491

492

493

494

Date

Apr-11

Apr-11

Jul-11

Jul-11

Jul-11

Aug-11

Sep-11

Sep-11

Sep-11

Nov-11

Dec-11

Feb-12

Feb-12

Current Departmental Research Reports

Research Report Title

A hybrid bootstrap approach to unit root tests

Procedures for estimating optimal bootstrap sample

size for the m out of n bootstrap

Threshold modelling of martingale differences

On mixture memory GARCH models

On the quasi-likelihood estimation for random
coefficient autoregressions

Moment-based tests for random effects in panel data
models

Least absolute deviation estimation for nonstationary
vector autoregressive time series models with pure
unit roots

On the detection of the number of signals with possibly
equal strengths in the high-dimensional case

Estimation of the population spectral distribution from a

large dimensional sample covariance matrix

On uniform correctness of bootstrap confidence
intervals under M-estimation

Threshold Poisson autoregression

A hybrid procedure for density estimation amid model
uncertainties

Discussion of 'An analysis of global warming in the Alpine

region based on nonlinear nonstationary time series
models' by Battaglia and Protopapa

The complete listing can be found at http://www.hku.hk/statistics/tr.htm
Requests for off prints may be sent to saas@hku.hk by e-mail

Author(s)

Guodong Li, Chenlei
Leng and Chih-Ling
Tsai

Bei Wei and Stephen
M.S. Lee

Kung-Sik Chan, Dong
Li, Shiging Ling and
Howell Tong

Muyi Li, Wai Keung Li
and Guodong Li

L. Truquet and J. Yao

Jianhong Wu and
Guodong Li

Guodong Li,
Jianhong Wu and
Wai Keung Li

Damien Passemier
and Jian-Feng Yao

W.M. Li, J.Q. Chen,
Y.L. Qin, J.F. Yao and
Z.D. Bai

Zhuging Yu and
Stephen M.S. Lee

Chao Wang, Jian-
Feng Yao and W.K.
Li

Mehdi Soleymani and
Stephen M.S. Lee

Howell Tong

CR R )
0.0 0.0





