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Abstract: Conditional heteroscedasticity is often observed in many real time se-

ries data in diverse fields, including ecology, economics, finance and others. Its

modelling has attracted considerable attention in the literature for more than 30

years. Probably the most popular is the autoregressive conditional heteroscedas-

ticity (ARCH) model introduced by Engle (1982), which was later generalized by

many others. By viewing the ARCH approach as a dynamic mixture of indepen-

dent random variables, we explore the potential provided by visiting the most basic

form of a dynamic mixing function. The exploration has enabled us to develop

systematically a simple yet versatile observable mixing function, leading to the

conditionally heteroscedastic AR model with thresholds, or a T-CHARM for short.

Besides its capability, among others, of capturing the so-called volatility clustering

and asymmetric conditional heteroscedasticity, and having heavier tail than the in-

novations, the T-CHARM can preserve non-negativity of the conditional variance

as well as stationarity without placing restrictive constraints on its parameters. In-

deed, the mixing function of a T-CHARM need not even be an increasing function

of the magnitude of the state variable. We further provide fairly comprehensive

theoretical underpinnings for statistical practice, which are supported by efficient

computation procedures and algorithms. We report some of our experiences with

T-CHARM of real time series from several disciplines, namely economics, biology

and environmental science, which highlight the general utility of T-CHARM, espe-

cially beyond economic time series. Finally, we indicate potentials of the approach

to multivariate time series as well as random fields.

Key words and phrases: Compound Poisson process; conditional variance; heavy

tail; heteroscedasticity; limiting distribution; quasi-maximum likelihood estimation;

random field; score test; T-CHARM; threshold model; volatility.

1 Introduction

A time series can often be modelled as the sum of a conditional mean function

(i.e. the drift or trend) and a conditional variance function (i.e. the diffusion).
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See, e.g., Tong (1990, p. 98). In the time series literature, the former attracted

attention from very early days. Although the importance of the latter did not

go entirely unnoticed, with an early example in ecological population dynamics,

e.g. Moran (1953), a systematic modelling of the latter did not seem to attract

serious attention before the 1980s.

For discrete-time cases, on which this paper focuses, and as far as we are

aware, it is in the econometric and finance literature that the modelling of the

conditional variance has been treated really seriously. Indeed Engle (1982) pro-

posed the autoregressive conditional heteroscedasticity (ARCH) model, which

has attracted a wide following in the above literature. (For a simple introduction

see, e.g., Cryer and Chan (2008).)

Now, given the popularity of the ARCH model and its many variants, we

might be asked as to why we should wish to introduce an alternative approach.

A short answer is the fact that there is more than one way to skin a cat. We

only need to cite the area of dimension reduction as a recent example, in which

we have methods based on projection pursuit, sliced inverse regression, princi-

pal Hessian direction, minimum average variance estimation, and others. (See,

e.g., Xia et al. (2002).) A longer answer is this. We view the ARCH model

as a dynamic mixture of independent random variables. Specifically, it uses a

mixing function that is the square-root of a linear combination of the squares

of relevant past observations. Now, in order to preserve non-negativity of the

conditional variance as well as stationarity, constraints on the parameters of the

ARCH model are necessary. It turns out that these constraints can be rather

restrictive for practical applications. Moreover, for different applications, it has

been found necessary to amend the ARCH model in different directions. In

fact, a wikipedia search reveals a vastly extended family with members carrying

acronyms like GARCH, EGARCH, IGARCH, NGARCH, GARCH-M, QGARCH,

GJR-GARCH, TGARCH, fGARCH. (The list is probably incomplete.) Each

acronym corresponds to an attempt to amend the basic ARCH model to cope

with different practical demands, by extending the basic ARCH mixing function

to ones of increasing complexity and carrying with them associated parameter

constraints. Therefore against the above background, we would argue that there

is no a priori reason why the mixing function should be wedded to the form ini-
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tiated in Eagle (1982) and generalized by its followers. Therefore, it is pertinent

to go back to basics and seek afresh an alternative approach based on a most

basic form of the mixing function.

Note that although unobservable mixing functions have been studied they

are not the focus of this paper.

Now, the simple idea of a piecewise constant mixing function was already

sown in Moran (1953) and made its debut in Tong and Lim (1980). Let us not

forget that piecewise constant functions are basic to many core statistical areas,

e.g. histograms for density estimation and regressograms for regression analysis.

Moreover, Tong (1982) discussed how a discontinuous decision process (e.g. as

that often incurred in investment strategies) could result in a smooth dynamical

system becoming a piecewise smooth one. We pursue the idea systematically in

this paper. The aims are multi-fold: (i) to demonstrate the existence of a viable

and simple alternative to model conditional heteroscedasticity which we shall

call T-CHARM; (ii) to show that without imposing restrictive conditions on its

defining parameters, a T-CHARM can preserve non-negativity of the conditional

variance as well as stationarity, and can have a distribution with a heavier tail

than that of the innovation; (iii) to show that the mixing function need not be

an increasing function of the magnitude of the state variable; (iv) to show the

applicability of T-CHARM to areas much wider than economics; (iv) to outline

scopes of extension into multivariate time series, discrete-valued processes, spatio-

temporal processes, image processing and others.

Clearly, thresholds will be the key to the piecewise-constant approach to

modelling the conditional variance function, just as they are to the piecewise-

linear approach to modelling the conditional mean function. Recent references

of the latter since its introduction by Tong (1978) include Chan (2009), Hansen

(2011), Tong (2011) and a special issue edited by Chan and Li (2007). Briefly,

they include, for example, ecological dynamics (Stenseth, 2009), threshold ran-

dom coefficient AR models (Brockwell et al., 1992), threshold moving-average

models (Gooijer, 1998; Ling and Tong, 2005; Li and Li, 2008; Li, Ling and Tong,

2012; Li, Ling and Li, 2012), threshold ARMA models (Tong, 1990; Li and Li,

2011; Li et al., 2011), threshold cointegration (Balke and Fomby, 1997; Hansen

and Seo, 2002), threshold unit root (Enders and Granger, 1998) and many others.
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Although these experiences are valuable, many new challenges remain before we

can achieve our stated goal.

This paper considers a particularly simple threshold model that focuses on

the conditional variance (sometimes also called volatility in econometrics and

finance); we call it the threshold model for conditional heteroscedasticity, or T-

CHARM for short. An appealing feature of the T-CHARM is that it is always

strictly stationary and ergodic essentially without any restriction on the param-

eters. Its mixing function is so flexible that asymmetric heteroscedasticity poses

no particular problem. Strong consistency is enjoyed by the quasi-maximum

likelihood estimators of the parameters and convergence rates are available. In

fact, the limiting distribution of the estimated threshold is the same as that of

the smallest minimizer of a two-sided compound Poisson process. When the

re-scaled error is normal, it is noteworthy that the percentiles of the limiting

distribution can be tabulated readily. Other parameter estimates are shown to

be asymptotically normal.

Our proposed approach bears some resemblance to the QGARCH model

(Gourieroux and Monfort, 1992) and the Threshold ARCH model (Rabemanan-

jara and Zaköıan, 1993; Zaköıan, 1994), in that they all carry with them some

non-parametric flavour. However, the T-CHARM differs fundamentally from

these earlier developments in that while the QGARCH model and the Thresh-

old ARCH model assume fixed and known thresholds over which the conditional

variance function jumps, the T-CHARM is a systematic development that infers

from data the unknown number and unknown locations of the thresholds. Unless

there is prior substantive knowledge, a fixed-threshold approach, being rather

like a spline approach, generally requires stipulating a large number of thresh-

olds for an adequate piecewise-constant approximation to the true conditional

variance function. Thus, for finite samples, some of the estimates of jumps may

have excessive standard errors. On the other hand, our data oriented approach

to estimating the number and locations of the thresholds tends to result, in prac-

tice, in a much parsimonious parametrization involving only a minimal number

of thresholds; see the real applications below.

This paper is organized as follows. Section 2 presents the model and its

structure. Section 3 studies the estimation of the model parameters. Section 4
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gives the limiting distribution of the estimated threshold including a useful ap-

proximation. Section 5 considers various statistical tools pertinent to T-CHARM

modelling. Section 6 illustrates the methodology by reference to three sets of real

data, drawn respectively from finance, the biological science and the environmen-

tal science. We conclude the paper with some discussion in Section 7. Proofs of

key results are relegated to the appendix.

2 T-CHARM and its probabilistic structure

A T-CHARM is a simple(st) threshold autoregressive (TAR) model. In its sim-

plest form (-a more general form will be given in the next section):

Xt = σ(Xt−1)ηt, (1)

where {ηt} are independent and identically (but not necessarily normally) dis-

tributed (i.i.d.) random variables each with zero mean and unit variance, ηt is

independent of {Xs : s < t}, and σ(x) is a piecewise constant function of x.

Assume that σ takes m distinct values. Specifically, let σ(x) = σi for x ∈ Ri,

where σi’s are distinct positive numbers, and {Ri, i = 1, . . . , m} define a partition

of the real line R, i.e., R = ∪m
i=1Ri and the Ri’s are pairwise disjoint. The Ri’s

will be referred to as regimes below. Thus, the conditional variance of Xt given

current and past X’s depends only on the regime into which Xt−1 falls. It is clear

that E(Xt|Xs, s < t) ≡ 0, so {Xt} is a martingale difference sequence of random

variables. Consequently, the X’s are uncorrelated forming a sequence of white

noise. Clearly, a T-CHARM can be generalized in many different ways, just as

a TAR model can; for a survey, see Tong (2011). For example, the argument of

the function σ can be replaced by a more general ‘state’ variable, which can be a

function of either an observable or a hidden time series or both. Another direc-

tion is to soften the thresholding by smoothing the piecewise constant function

σ, which can be accomplished obviously in a multitude of ways, e.g. similar to

those described in Tong (2011).

Recall that the ARCH approach builds on assuming, in its simplest form,

σ(x) =
√

α0 + α1x2, α0 and α1 being positive constants. Loosely speaking, the

ARCH approach adopts a continuous mixture of independent random variables,
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with a mixing function that lacks flexibility, e.g. it is always an increasing func-

tion of |x| for positive α1.

Now, future X’s can be predicted based on the information contained in

the current and past X’s. As linear prediction is valueless given the white noise

structure of the X’s, we must turn to nonlinear prediction. The result stated

below indicates that the dependence structure of the X’s is generally revealed by

the autocorrelation structure of some instantaneously nonlinear transformation

of the X’s. In fact, we shall show that for any instantaneous transformation

Yt = h(Xt) with finite second moments and E(h(ηt)) 6= 0, the autocorrelation

function (ACF) of the transformed process is generally the same as that of some

stationary ARMA(m − 1, m − 1) process. Note that both the AR and the MA

orders are generally equal to one less than the number of regimes.

Define the regime process {St} for which St = i if and only if Xt ∈ Ri, i =

1, . . . , m. In words, the regime process signifies the regimes into which the obser-

vations fall. oNow, the regime process is a Markov chain. Let P = (pij) be the

1-step transition probability matrix of the regime process, i.e., pij = P(Xt+1 ∈
Rj |Xt ∈ Ri). Being a stochastic matrix, P admits 1 as its maximum eigenvalue.

Let 1 denote an m-dimensional vector of unit elements. Then P1 = 1. So, the

vector 1 is a right eigenvector of P . Consequently, there exists an m-dimensional

non-zero left eigenvector u corresponding to the unit eigenvalue so that

uτP = uτ , (2)

where τ denotes the transpose of a vector or matrix. If u is non-negative, it

can be normalized to sum to 1. Then if the regime process has u as its initial

probability distribution, the regime process becomes stationary. The existence

and uniqueness of a positive stationary distribution for the regime process can

be guaranteed if the transition probability matrix is irreducible, under which

assumption the transition probability matrix has a simple unit eigenvalue, i.e.,

of unit multiplicity, and all its other eigenvalues are less than 1 in magnitude.

Indeed, the irreducibility of P is a necessary and sufficient condition for the

existence of a unique stationary distribution for the Markov chain. The transition

matrix P is irreducible if and only if
∑∞

t=1 P t is a positive matrix. P is irreducible

under very mild conditions, for example if ηt has a positive probability density

function. Henceforth, we assume that P is an irreducible matrix.



THRESHOLD HETEROSCEDASTICITY 7

The vector of stationary probabilities u admits a closed-form solution in

terms of the m × m transition probability matrix P . Partition P as follows:

P =

(
PAA PAB

PBA PBB

)
,

where PAA is (m− 1)× (m− 1) and PBA is 1× (m− 1). Similarly, partition u as

(uτ
A, uB)τ , where uA is of dimension m−1. Let 1 denote the (m−1)−dimensional

column vector all of whose elements equal 1. Since u sums to 1, uB = 1 − uτ
A1.

Now, (2) is equivalent to

uτ
APAA + (1 − uτ

A1)PBA = uτ
A,

implying uτ
A = PBA(I +1PBA−PAA)−1, where I is the (m−1)× (m−1) identity

matrix. For the case of two regimes, i.e. m = 2, let

P =

(
1 − ν2 ν2

ν1 1 − ν1

)
.

Then we have uτ = ( ν1
ν1+ν2

, ν2
ν1+ν2

). Note that the irreducibility of P ensures that

ν1 + ν2 > 0.

We now show that the stationary distribution of Xt is a mixture of distribu-

tions of σjη, where η has the same distribution as the common distribution of the

innovations {ηt}, with uj as the probability weights, where uτ = (u1, u2, . . . , um).

Conditional on X0 = x0 ∈ Ri, St−1 = j with probability P t−1
ij , in which case Xt

is distributed as σjηt. Because P t−1
ij → uj , the conditional distribution of Xt

converges in distribution to a mixture of distributions of σjη with probability uj .

It is readily seen that this limiting mixture distribution is the stationary distribu-

tion of {Xt}. A careful examination of the above arguments show that the ℓ-step

ahead predictive distribution of Xt+ℓ given Xt in the ith regime is a mixture

of distributions of σjη with probability weight P ℓ−1
ij . In practice, if the X’s are

returns, it is of interest to predict the uncertainty in the ℓ-step-ahead cumulative

returns. That is to say the interest is to explore the predictive distribution of
∑ℓ

k=1 Xt+k. It can be seen that the latter distribution is identical to that of a

mixture of distributions corresponding to
∑ℓ

k=1 σjk
ηt+k, with probability weights

Pi,j1

∏ℓ
k=2 Pjk−1,jk

, for jk ∈ {1, . . . , m}, k = 1, ..., ℓ. These distributional results

will be useful in value-at-risk calculations in finance.
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It follows from the Cayley-Hamilton theorem that if d(x) = det(xI − P ) is

the characteristic polynomial of P , then d(P ) = 0. Simply let d(x) = xm −
∑m

j=1 djx
m−j , d(P ) = Pm − ∑m

j=1 djP
m−j , where the superscript denotes a

matrix power and the zeroth power is I, the identity matrix. Since 1 is the

unique eigenvalue of P that is of unit magnitude, d(x) = (x − 1)c(x), where

c(x) = xm−1 −∑m−1
j=1 cjx

m−j−1 has all its root of magnitude strictly less than 1.

Theorem 2.1 Let {Xt} be defined by Eqn. (1) and the transition probability

matrix P of the associated regime process {St} be an irreducible m × m matrix.

Let Yt = h(Xt), where h is a continuous function. Assume that {Yt} admits finite

second moments and E(h(ηt)) 6= 0. Let γk = γk,Y be the kth lag auto-covariance

of {Yt}. Then {γk} satisfies the Yule-Walker equation

γk = c1γk−1 + . . . + cm−1γk−m+1 for k ≥ m. (3)

The fact that {γk} satisfies the Yule-Walker equation means that the ACF of

{Yt} is exactly the same as that of some ARMA(m−1, m−1) process. To see this,

let B be the backshift operator defined by BYt = Yt−1. Observe that because of

the Yule-Walker equation, Wt = c(B)Yt is a process of memory not more than

m − 1 lags, and so {Wt} must be an MA(m − 1) process by Proposition 3.2.1 of

Brockwell and Davis (1991). Thus, in terms of the second order structure, {Yt}
is an ARMA(m − 1, m − 1) process. However, it can be seen from the proof of

Theorem 2.1 that if the vector ντ = (E(h(σ1ηt)), . . . , E(h(σmηt))) is orthogonal

to some eigenvectors of P whose corresponding eigenvalues are less than 1 in

magnitude, then the ARMA orders may be lowered. However, the latter happens

only if ν lies in a set of zero Lebesgue measure. For example, this exceptional

case occurs if h is a linear function, in which case ν = 0 and is orthogonal to all

eigenvectors of P . Actually, in this case, {Yt} is a sequence of white noise process,

an ARMA(0, 0) process! However, for a nonlinear transformation h, it is unlikely

that ν is orthogonal to any eigenvector of P whose corresponding eigenvalue is

less than 1 in magnitude. Thus, we have the generic result that any instantaneous

nonlinear transformation of {Xt} is an ARMA(m−1, m−1) process. This result

forms a basis for tentatively identifying the number of regimes of the T-CHARM.

For example, we can consider the square of the X process and tentatively identify

its ARMA orders by using existing methodologies such as the Extended ACF



THRESHOLD HETEROSCEDASTICITY 9

(EACF, see Tsay and Tiao, 1984), the AIC and others; see, e.g., Cryer and Chan

(2008). The number of regimes m may be estimated by adding 1 to the estimated

AR order. The identification may be verified by repeating the procedure after

taking the absolute value the original process. Note that the above discussion

subsumes an earlier result of Gourieroux and Monfort (1992), who derived the

aforementioned ARMA representation for the special case h(x) = x2.

Another issue concerns the definition of regimes. The solution is likely to be

application-specific. Empirically, a simple partition scheme consists of defining

Rj = {x ∈ R : rj < g(x) ≤ rj+1}, where −∞ = r0 < r1 < r2 < · · · < rm−1 <

rm = ∞, and g is some function, for example, the identity function or the absolute

value function. We shall illustrate the above techniques with real data later.

Denote It = (I2t, ..., Imt)
τ , where Iit = I{Xt ∈ Ri}, i = 2, ..., m, and I{·} is

an indictor function. Let at = (I{σ1ηt ∈ R2}, ..., I{σ1ηt ∈ Rm})τ be an (m − 1)-

dimensional vector and At be an (m − 1) × (m − 1) matrix whose (i, j) entry

equals I{σj+1ηt ∈ Ri+1} − I{σ1ηt ∈ Ri+1}. Then, we have

It = at + AtIt−1.

After iterating k times, it follows that

It =
k∑

j=0

( j−1∏

i=0

At−i

)
at−j +

( k∏

i=0

At−i

)
It−k−1,

with the convention
∏−1

i=0 = I and
∏j

i=0 At−i = AtAt−1 · · ·At−j . Assume that ηt

has a positive density on the real line R and the Lebesgue measure of each Ri is

positive. Since the matrices in the sequence {At} are i.i.d. and E|I{σjηt ∈ Ri}−
I{σ1ηt ∈ Ri}| < 1, using the technique in the proof of Theorem 2.1 in Li, Ling and

Tong (2012), we can see that the first term converges to
∑∞

j=1

(∏j−1
i=0 At−i

)
at−j

almost surely (a.s.), while the second term converges to zero a.s. Clearly, the

infinite series above is strictly stationary and ergodic since it is a function of

i.i.d. {ηt}. Summarizing the above discussion, we have the following result.

Theorem 2.2 If the density of ηt, denoted by f(·), is positive on R and the

Lebesgue measure of each Ri is positive, then, (i) It has the following expansion

It =
∞∑

j=0

( j−1∏

i=0

At−i

)
at−j
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and σ(Xt) = σ1 + (σ2 − σ1, ..., σm − σ1)It−1; (ii) model (1) is always strictly

stationary and uniformly ergodic.

It remains to verify the uniform ergodicity of the process, which follows

from Corollary 6.12 of Nummelin (1984) and the fact that p(x, y), the transition

probability density function of {Xt} (w.r.t. the Lebesgue measure), is bounded

below by K×f(y) for all x, y ∈ R, where 0 < K < ∞ is the minimum of σ(·), i.e.

the state space R is a small set. We should mention that we do not impose any

condition on σi > 0 in Theorem 2.2 and the results hold even when E|ηt| = ∞.

Note that Theorem 2.2 significantly improves Proposition 1 of Gourieroux and

Monfort (1992), who obtained the strict stationarity of the process under similar

regularity conditions.

We further study the autocorrelation structure of the conditional variances

{σ2(Xt)} in model (1). For k ≥ 0, simple calculations give that

cov(σ2(Xt), σ
2(Xt−k)) =

m∑

i=1

m∑

j=1

σ2
i σ

2
j δ

(k)
ij ,

where δ
(k)
ij satisfies the following iterative equations

δ
(k)
ij =

m∑

s=1

P(σsηt ∈ Ri)δ
(k−1)
sj

δ
(0)
ij = P(Xt ∈ Ri ∩ Rj) − P(Xt ∈ Ri)P(Xt ∈ Rj).

For k = 0, we can get the variance of σ2(Xt), namely

var(σ2(Xt)) =
∑

1≤i<j≤m

(σ2
j − σ2

i )
2
P(Xt ∈ Rj)P(Xt ∈ Ri).

Here, P(Xt ∈ Ri)’s can be uniquely determined by the following equations

P(Xt ∈ Ri) =
m∑

j=1

P(σjηt ∈ Ri)P(Xt ∈ Rj) and
m∑

i=1

P(Xt ∈ Ri) = 1.

Thus, it is not hard to obtain the ACF {ρk} of σ2(Xt) in principle, although the

general expression can be complicated. However, for the case m = 2, we have

simple expressions.

Theorem 2.3 Suppose that m = 2 and the assumptions in Theorem 2.2 hold.

Then, for k ≥ 0
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1. cov(σ2(Xt), σ
2(Xt−k)) = (σ2

2 −σ2
1)

2δ(1−δ){P(σ2ηt ∈ R2)−P(σ1ηt ∈ R2)}k,

where δ = P(σ1ηt ∈ R2)/{1 − P(σ2ηt ∈ R2) + P(σ1ηt ∈ R2)};

2. ρk = {P(σ2ηt ∈ R2) − P(σ1ηt ∈ R2)}k.

This result shows that the ACF of σ2(Xt) decays to zero at an exponential

rate and that clustering (due to positive covariances) may be obtained.

It is interesting to compare the ACFs of T-CHARM with those of GARCH

models. For simplicity of discussion, let us consider the popular GARCH (1,1)

model, namely σ2
t = α0 + (αη2

t + β)σ2
t−1, where α > 0 and β > 0. The corre-

sponding ACF {ρgk} is

ρgk = (α + β)k,

where α + β < 1. It is well-known that the estimation of ρgk requires a finite

fourth moment condition, i.e., 2α2 +(α+β)2 < 1, and this very strong condition

is rarely satisfied by the estimated parameters in many real applications. As

such the ρgk or its estimator would be hard put to provide a reliable assessment

of the estimated autocorrelations of conditional variances. In contrast, we do

not need any restriction on the parameters for the ρk of T-CHARM. We suggest

that model (1) can offer a reliable alternative to modelling conditional variances.

Additionally, model (1) may also capture the heavy-tailed property of financial

time series because

EX4
t

(EX2
t )2

= (Eη4
t )

∑m
i=1 σ4

i P(Xt−1 ∈ Ri)

{∑m
i=1 σ2

i P(Xt−1 ∈ Ri)}2
≥ Eη4

t

by Jensen’s inequality.

Note that the inequality is strict for m ≥ 2 if the innovations have infinite

support and {σi, i = 1, 2, · · · , m} is not a singleton, implying that the T-CHARM

generally has a heavier tail than the innovations. To illustrate, we consider the

two following T-CHARMs:

yt = [2I{yt−1 ≤ 0} + σI{yt−1 > 0}]ηt (4)

and

yt = [I{yt−1 ≤ r} + 2I{yt−1 > r}]ηt (5)
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with ηt being standard normal. The left diagram in Fig. 1 plots the theoretical

kurtosis of the stationary T-CHARM as a function of σ for the model defined by

(4) while the right figure corresponds to model (5). For both models, the kurtosis

exceeds that of the innovations, as it must be the case.
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Figure 1: The kurtosis of models (4) and (5).

3 Quasi-maximum likelihood estimation

In practice, a simple way to implement model (1) is to adopt the form Ri =

(ri−1, ri]. Here, we consider a slightly more general model than (1). The threshold

variable is allowed to be a functional of the past information. That is, the model

is defined as

Xt = σ(Wt−1)ηt,

σ(Wt−1) =
m∑

i=1

σiI{ri−1 < Wt−1 ≤ ri},
(6)

where Wt−1 is a known functional of {Xt−1, ..., Xt−p}, m is the number of regimes,

σi’s are positive numbers and −∞ = r0 < r1 < · · · < rm−1 < rm = ∞,
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{r1, ..., rm−1} being the threshold parameters. In this and next sections, m is

assumed to be known. Denote θ = (σ2
1, ..., σ

2
m)τ and r = (r1, ..., rm−1)

τ . Let

θ0 = (σ2
10, ..., σ

2
m0)

τ and r0 = (r10, ..., rm−1,0)
τ be the true values of θ and r, re-

spectively. Note that we do not assume that ηt is normally distributed. To esti-

mate the parameters from data {X1, ..., Xn} given the initial values {X−p, ..., X0},
we adopt the following objective function:

Ln(θ, r) = −1

2

n∑

t=1

m∑

i=1

(
log σ2

i +
X2

t

σ2
i

)
Iit, (7)

where Iit = I{ri−1 < Wt−1 ≤ ri}. For each r, it is easy to maximize Ln(θ, r)

with respect to θ, which we denote by θ̂n(r) ≡ (σ̂2
1n(r), ..., σ̂2

mn(r))τ with

σ̂2
in(r) =

∑n
t=1 X2

t Iit∑n
t=1 Iit

, i = 1, ..., m.

Note that there are at most finitely many different values of Ln(θ̂n(r), r). By the

enumeration approach, we estimate r0 by

r̂n = arg max
r

Ln(θ̂n(r), r).

Using the plug-in method, the estimator of θ0 is given by θ̂n = θ̂n(r̂n). We call

(θ̂n, r̂n) the quasi-maximum likelihood estimator (QMLE) of (θ0, r0).

Generally, r̂n takes the form (W(i1), ..., W(im−1))
τ , where i1 < · · · < im−1 and

{W(1), ..., W(n)} are the order statistics of {W1, ..., Wn}. If (W(j1), ..., W(jm−1))
τ is

an estimator of r0, then Ln(θ̂n(r), r) is a constant over the (m − 1)-dimensional

cube R̃, where

R̃ = {r = (r1, ..., rm−1)
τ : ri ∈ [W(ji), W(ji+1)), i = 1, ..., m − 1}.

Thus, there exist infinitely many r such that Ln(·) can achieve its global maxi-

mum and each r ∈ R̃ can be taken as an estimator of r0. In this case, we choose

(W(j1), ..., W(jm−1))
τ as a representative of R̃ and denote it as the estimator of

r0. With the above procedure, it is not hard to show that (θ̂n, r̂n) is the QMLE

of (θn, rn), so

(θ̂n, r̂n) = arg max
Θ×R

Ln(θ, r),
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where Θ × R is the parameter space and Θ = Rm
+ with R+ ≡ (0,∞) and R =

{r : −∞ < r1 < · · · < rm−1 < ∞}. To state our results, we need the following

assumptions.

Assumption 3.1 The density f(x) of ηt is continuous and positive on R, Eηt =

0 and Eη2
t = 1.

Assumption 3.2 The density fw(·) of Wt is continuous and fw(rj0) > 0 for

j = 1, ..., m − 1.

The following theorem establishes the strong consistency of (θ̂n, r̂n). The

proof is similar to that of Theorem 1 in Chan (1993) and is therefore omitted.

Theorem 3.1 If (i) Assumptions 3.1 and 3.2 hold, and (ii) σ2
i0 6= σ2

i+1,0 for

i = 1, ..., m − 1, then, (θ̂n, r̂n) → (θ0, r0) a.s. as n → ∞.

Condition (ii) in Theorem 3.1 is required to ensure the identifiability of r0. By a

technique similar to that used in the proof of Proposition 1 in Chan (1993), we

have the following theorem which establishes the convergence rate of r̂n and the

asymptotic normality of θ̂n.

Theorem 3.2 Under the conditions of Theorem 3.1, if supx∈R{(1+ |x|)f(x)} <

∞ and κ4 ≡ Eη4
t < ∞, then

(a) n(r̂n − r0) = Op(1);

(b)
√

n sup
‖r−r0‖≤B/n

|σ̂2
in(r) − σ̂2

in(r0)| = op(1) for any fixed B ∈ (0,∞).

Furthermore,

√
n(σ̂2

in(r0) − σ2
i0) =⇒ N

(
0,

(κ4 − 1)σ4
i0

Fw(ri0) − Fw(ri−1,0)

)
, i = 1, ..., m,

and all the normalized estimators are asymptotically independent, where Fw(x)

is the cumulative distribution function of Wt, and henceforth the symbol =⇒
indicates weak convergence.

The above results are similar to the corresponding results in Chan (1993),

who showed that the estimated threshold is n-consistent and asymptotically in-

dependent of other estimated parameters. See also Li and Ling (2012).
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4 Inference of the threshold parameter r0

From Theorem 3.2 (a), we know that the convergence rate of r̂n is n. To study the

limiting distribution of n(r̂n−r0), we consider the following profile log-likelihood

process:

L̃n(s) = −2
{

Ln

(
θ̂n(r0 +

s

n
), r0 +

s

n

)
− Ln

(
θ̂n(r0), r0

)}
, (8)

where s = (s1, ..., sm−1)
τ ∈ Rm−1.

Let D(Rm−1) denote the function space consisting of uniform limits of se-

quences of simple functions defined on Rm−1 that is equipped with the Skorokhod

metric (see Seijo and Sen, 2011; Li and Ling, 2012). By Theorem 3.2 and Taylor’s

expansion, L̃n(s) can be approximated in D(Rm−1) by

℘n(s) = Ln(θ0, r0 +
s

n
) − Ln(θ0, r0)

=
m−1∑

i=1

n∑

t=1

[
ξ
(i+1,i)
t I

{
ri0 +

si

n
< Wt−1 ≤ ri0

}
I{si < 0}

+ ξ
(i,i+1)
t I

{
ri0 < Wt−1 ≤ ri0 +

si

n

}
I{si ≥ 0}

]
,

where

ξ
(i,j)
t = log

σ2
i0

σ2
j0

+
(σ2

j0

σ2
i0

− 1
)
η2

t , i, j = 1, ..., m. (9)

Next, we define m − 1 independent one-dimensional two-sided compound

Poisson processes {Pj(z), z ∈ R} as

Pj(z) = I{z < 0}
N

(j)
1 (|z|)∑

k=1

U
(j+1,j)
k + I{z ≥ 0}

N
(j)
2 (z)∑

k=1

V
(j,j+1)
k , (10)

for j = 1, ..., m−1, where {N (j)
1 (z), z ≥ 0} and {N (j)

2 (z), z ≥ 0} are two indepen-

dent Poisson processes with N
(j)
1 (0) = N

(j)
2 (0) = 0 a.s. and with the same jump

rate fw(rj0). Both {U (i,j)
k }∞k=1 and {V (i,j)

k }∞k=1 are mutually independent copies

of ξ
(i,j)
1 . Here, we work with the left continuous version of N

(j)
1 (z) and the right

continuous version of N
(j)
2 (z).

We further define a spatial compound Poisson process ℘(s) as follows.

℘(s) =
m−1∑

j=1

Pj(sj), s = (s1, ..., sm−1)
τ ∈ Rm−1. (11)
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Clearly, ℘(s) → ∞ a.s. as ‖s‖ → ∞ since EU
(i+1,i)
t > 0 and EV

(i,i+1)
t > 0.

Therefore, there exists a unique random (m− 1)-dimensional cube [M−,M+) ≡
[M

(1)
− , M

(1)
+ ) × · · · × [M

(m−1)
− , M

(m−1)
+ ) at which the process {℘(s), s ∈ Rm−1}

attains its global minimum a.s.,i.e.,

[M−,M+) = arg min
s∈Rm−1

℘(s).

From (11), the minimization is equivalent to

[M
(j)
− , M

(j)
+ ) = arg min

z∈R
Pj(z), j = 1, ..., m − 1.

Note that the processes {Pj(z)} are independent, and so are {M (j)
− }, j = 1, ..., m−

1. Modifying slightly the proof of Theorem 3.3 in Li and Ling (2012), we can

prove the following theorem.

Theorem 4.1 If the conditions in Theorem 3.2 hold, then n(r̂n − r0) converges

weakly to M− and its components are asymptotically independent as n → ∞.

Furthermore, n(r̂n − r0) is asymptotically independent of
√

n(θ̂n − θ0) which is

always asymptotically normal.

Now, we describe how to implement M
(j)
− or M−. From (9) and (10), we

know that two factors determine the density of M
(j)
− , namely the jump rate and

the jump distributions. We can simulate M
(j)
− via simulating the compound

Poisson process Pj(z) in (10) on the interval [−T, T ] for any given T > 0 large

enough since the expectations of the jumps U
(j+1,j)
k and V

(j,j+1)
k are positive.

Modifying Algorithm 6.2 of Cont and Tankov (2004, p.174) for a one-sided com-

pound Poisson process, we have an algorithm for a two-sided compound Poisson

process:

Algorithm

Step 1. Sample N
(j)
1 and N

(j)
2 from Poisson distribution with the same param-

eter fw(rj0)T as the total number of jumps on the intervals [−T, 0] and

[0, T ], respectively.

Step 2. Sample two independent jump time sequences {U1, · · · , U
N

(j)
1

} and

{V1, · · · , V
N

(j)
2

}, where {Ui} i.i.d.
∼ U [−T, 0] and {Vi} i.i.d.

∼ U [0, T ]. Here,

U [a, b] denotes the uniform distribution on the interval [a, b].
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Step 3. Sample two mutually independent sequences {η1, · · · , η
N

(j)
1

} and {η1,

· · · , η
N

(j)
2

} from f(x). Use them to produce two mutually independent

jump-size sequences {Y1, · · · , Y
N

(j)
1

} and {Z1, · · · , Z
N

(j)
2

} by (9), respec-

tively.

For z ∈ [−T, T ], the trajectory of (10) is given by

Pj(z) = I{z < 0}
N

(j)
1∑

i=1

I{Ui > z}Yi + I{z ≥ 0}
N

(j)
2∑

j=1

I{Vj < z}Zj . (12)

Then, we take the smallest minimizer of Pj(z) in (12) on [−T, T ] as an observation

of M
(j)
− . By repeating the above algorithm, we can get a sequence of observations

of M
(j)
− , from which we can infer the distribution of n(r̂jn − rj0).

In practice, however, since only one sample Xn = {X1, ..., Xn} is available,

we can use it to estimate θ0 and fw(rj0), denoting the estimators as θ̂n and

f̂w(r̂jn), respectively, where f̂w(·) is the kernel density estimator of fw(·). Then

we can calculate the residuals {η̂1, ..., η̂n} and use them to construct kernel density

estimator f̂(·) of f(·).
When θ0, fw(rj0) and f(x) are all unknown, we substitute their consistent

estimators θ̂n, f̂w(r̂jn) and f̂(x) in the Algorithm and denote the corresponding

compound Poisson processes as {P̂j(z)}. Then we can get an approximation

M̂
(j)
− of M

(j)
− . Actually, by Theorem 16 in Pollard (1984, p.134), we have that

P̂j(z) =⇒ Pj(z) conditionally on Xn in D(R), in probability. By Theorem 3.1

(on the continuity of the smallest argmax functional) in Seijo and Sen (2011),

M̂
(j)
− =⇒ M− conditionally on Xn, in probability. Thus, we have proved the

following theorem.

Theorem 4.2 If the conditions in Theorem 3.2 hold, then, in probability,

lim
n→∞

|P(M̂
(j)
− ≤ x|Xn) − P(M

(j)
− ≤ x)| = 0

at each x for which P(M
(j)
− = x) = 0. That is, M̂

(j)
− |Xn

=⇒ M
(j)
− , in probability.

To illustrate the efficacy of the Algorithm, we consider a simple example

Xt = [2I{Xt−1 ≤ 0} + 0.5I{Xt−1 > 0}]ηt, (13)
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where ηt is i.i.d. standard normal. Here, the sample size is 400. In Figure

2, (a) gives the density of n(r̂n − r0), which is obtained by 10,000 replications;

(b) shows the density of M− when θ0, fw(r0) and f(x) are all known. When

a sample X = {x1, ..., x400} is given and fixed, (c) and (d) display the density

of M̂−. Here, 1,000 replications are used for (c) and 10,000 replications for (d).

From the figure, we can see that they all match well. Comparing (c) with (d),

we can find that the more the number of the replications, the more precise the

density of M̂−.

5 Testing for T-CHARM (m) against T-CHARM (m+

1)

Let us denote a T-CHARM with m regimes by T-CHARM (m). In applications

of threshold models, it is relevant to determine the number of regimes. Uncritical

applications of conventional techniques such as AIC or BIC can be misleading

because, among other issues, we have a non-standard inferential problem, so

much so that it is not obvious how to count the number of independently adjusted

parameters. In this section, we consider testing the T-CHARM(m) against the

T-CHARM(m + 1). A testing approach is appropriate because our experience

suggests that m is unlikely to be much larger than 2 or 3 in many practical

applications. Specifically, under the null H0, the T-CHARM is defined as in (6).

Under the alternative H1, there is an additional threshold, denoted by r, which

lies in the k-regime (rk−1, rk], such that σ(Wt−1) in the T-CHARM(m + 1) can

be written as

σ(Wt−1) =
m∑

i=1
i6=k

σ2
i Iit + σ2

1kI{rk−1 < Wt−1 ≤ r} + σ2
2kI{r < Wt−1 ≤ rk}.

Under H1, the log quasi-likelihood function (ignoring a constant) is

Ln(θ̃, r, σ1k, σ2k, r) = −1

2

n∑

t=1





m∑

i=1
i6=k

(
log σ2

i +
X2

t

σ2
i

)
Iit +

(
log σ2

1k +
X2

t

σ2
1k

)
I1kt

+
(

log σ2
2k +

X2
t

σ2
2k

)
I2kt

}
,
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Figure 2: (a) The density of n(r̂n − r0) when n = 400 and ηt ∼ N (0, 1); (b) The density

of M
−

when θ0, fw(r0) and f(x) are all known and 10,000 replications are used. (c)

The density of M̂
−

when θ̂n, f̂w(r̂n) and f̂(x) and 1,000 replications are used. (d) The

density of M̂
−

when θ̂n, f̂w(r̂n) and f̂(x) and 10,000 replications are used.
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where θ̃ = (σ2
1, · · ·σ2

k−1, σ
2
k+1, · · · , σ2

m)τ , I1kt = I{rk−1 < Wt−1 ≤ r} and I2kt =

I{r < Wt−1 ≤ rk}. For each r, the profile log-likelihood ratio test statistic is

Lkn(r) = Ln(
ˆ̃
θ, r̂, σ̂1k(r), σ̂2k(r), r) − Ln(θ̂, r̂)

= −1

2

n∑

t=1

[{
log σ̂2

k(r̂) +
X2

t

σ̂2
k(r̂)

}
Ikt(r̂) +

{
log σ̂2

1k(r) +
X2

t

σ̂2
1k(r)

}
I1kt(r̂k−1, r)

+
{

log σ̂2
2k(r) +

X2
t

σ̂2
2k(r)

}
I2kt(r, r̂k)

]
,

where

σ̂2
1k(r) =

∑n
t=1 X2

t I1kt∑n
t=1 I1kt

and σ̂2
2k(r) =

∑n
t=1 X2

t I2kt∑n
t=1 I2kt

.

Routine analysis then yields

2Lkn(r) = Ak(r)
{ 1√

n

n∑

t=1

(η2
t − 1)I1kt −

Fw(r) − Fw(rk)

Fw(rk+1) − Fw(rk)

1√
n

n∑

t=1

(η2
t − 1)Ikt

}2
+ op(1)

= Ak(r){Dkn(r)}2 + op(1),

where

Ak(r) =
Fw(rk) − Fw(rk−1)

{Fw(r) − Fw(rk−1)}{Fw(rk) − Fw(r)} ,

and op(1) holds uniformly in r ∈ [ri−1, ri]. By Theorem 3.1 in Ling and Tong

(2011), {Dkn(r) : r ∈ [ri−1, ri]} converges weakly to a centered Gaussian process

Gk(r) : r ∈ [ri−1, ri]} with covariance kernel K(r, s) = cov(Gk(r), Gk(s)) given

by

(κ4 − 1)
[
min{Fw(r) − Fw(rk−1), Fw(s) − Fw(rk−1)}

− {Fw(r) − Fw(rk−1)}{Fw(s) − Fw(rk−1)}
Fw(rk) − Fw(rk−1)

]
.

Thus, {Fw(rk) − Fw(rk−1)}−1/2Dkn(r) converges weakly to a scalar multiple of

the standard Brownian bridge Bk(s)−sBk(1), where s = Fw(r)−Fw(rk)
Fw(rk+1)−Fw(rk) ∈ [0, 1].

In principle, we should use 2 maxr∈(rk−1,rk] Lkn(r) to construct a test. But since

2 maxr∈(rk−1,rk] Lkn(r) = ∞, we have to restrict the range of r to [c1,k, c2,k] so that

the corresponding s lies in [a1,k, a2,k], a proper subset of (0, 1), say (0.05, 0.95),

in each regime. In this way, we can obtain a useful limiting distribution, similar
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to those in Bai and Perron (1998) for testing multiple change-point problems

and Chan (1990) for testing a threshold AR model. Since we have m regimes

under the null hypothesis, the LR test can be applied regime by regime, with an

adjustment for multiple testing via the Bonferroni inequality. Specifically, the

LR test statistic for an additional threshold in the k-th regime equals

Tk,n = 2(κ4 − 1)−1 sup
r∈[c1,k, c2,k]

Lkn(r),

where κ4 ≡ Eη4
t assumed finite. Summarizing we have the following theorem.

Theorem 5.1 Under the H0, if the density function of ηt is bounded and posi-

tive, then it follows that

Tk,n =⇒ sup
s∈[a1,k, a2,k]

(Bk(s) − sBk(1))2

s(1 − s)
,

where Bk(s), k = 1, · · · , m, are independent standard Brownian motions.

Since the test is applied regime by regime, we consider the case of m = 1

and the range of s equals [1, 1 − a] for some 0 < a < 1/2. Asymptotically,

the null distribution of the square root of likelihood ratio test (after some fur-

ther normalization) is then equivalent to the distribution of the maximum of

the normalized absolute Brownian bridge over the interval [a, 1 − a]. Dirkse

(1975) showed that the latter is equal to the distribution of the maximum of

the absolute value of a stationary Ornstein-Uhlenbeck process over the inter-

val [−α, α], where α = log(1/a − 1)/2. Specifically, the normalized Brownian

Bridge {Bs/
√

s − s2, 0 < s < 1} is transformed to an Ornstein-Uhlenbeck process

{U(t),−α < t < α}, where s is transformed to t = log(s/(1 − s))/2. Moreover,

Dirkse (1975) gave the following asymptotic formula:

P( sup
−α≤t≤α

|U(t)| > c) ∼
√

2/π exp(−c2/2)(αc − α/c + 2/c), (14)

for c large. (Here, we replace the typographical error of 1/c in Dirkse (1975) by

2/c, thanks to Professor D. O. Siegmund.) Thus, we can compute the approxi-

mate p-value of the LRT by the formula

p0(c̃) =
√

2/π exp(−c̃2/2)(αc̃ − α/c̃ + 2/c̃), (15)
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where c̃ is the square root of the (normalized) LRT statistic. The asymptotic for-

mula derived by Dirkse (1975) then implies that the p-value p0 is asymptotically

uniformly distributed over [0, 1] in the sense that P(p0 < p|H0) ∼ p for p → 0.

Next, we consider two modified LRT that make use of the location of the

quasi-likelihood estimator of the threshold. Our first modification is based on

the observation that were the threshold value under the alternative known to be

r0, then we could use a more powerful likelihood ratio test with the threshold

fixed at r0, whose asymptotic null distribution is χ2
1. In practice, the threshold is

unknown and we consider the likelihood ratio test with a wide range of possible

threshold values, which reduces the power of the test. For the case of a Brownian

Bridge, it is known that its global maximum value is independent of the location

when the maximum is attained, with the latter having a uniform distribution.

This independence property also holds, at least asymptotically, for the Ornstein-

Uhlenbeck process restricted to a fixed finite interval, say [h1, h2], and that the

marginal distribution of the location of the global maximum has a uniform dis-

tribution over [h1, h2]; we sketch a proof in the Appendix. Hence, we may modify

the calibration of the LRT as follows. Consider the LRT implemented with the

threshold searched over the a × 100 to (1 − a) × 100 percentiles of the threshold

variable, and that the square root of the LRT attains its maximum value, say,

c̃ at the β percentile. We then compute the p-value by formula (15) with α

there replaced by βM = log(1/ min(β, 1 − β) − 1), i.e. we compute the p-value

as if the range of the threshold is from [β, 1 − β] if β < 0.5, and then double

the corresponding transformed time range in the Ornstein-Uhlenbeck process.

Specifically, denote by p1 the p-value so computed; it is then given by

p1(c̃, β) =
√

2/π exp(−c̃2/2)(βM c̃ − βM/c̃ + 2/c̃)

We claim that p1 is asymptotically uniformly distributed over [0,1], so it

provides a valid calibration of the LRT under the null hypothesis. In order

to see this, recall that under our conjecture, β is asymptotically independent

of c̃, and log((1 − β)/β)/2 is uniformly distributed over [−α, α]. Thus, βM is

uniformly distributed over [0, 2α]. The independence of c̃ and β then implies

that E(p1|c̃) =
√

2/π exp(−c̃2/2)(αc̃− α/c̃ + 2/c̃), and hence p1 shares the same

asymptotic behaviour of p0. For alternatives with the threshold parameter close

to the 50 percentile, β is close to one half, rendering the calculation of p1 to be
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based on a narrow interval around the the 50 percentile, which then increases the

power of the LRT in discerning threshold structure. On the other hand, if the

threshold parameter is close to the data extremes, then p1 is now calibrated on

a very wide interval, thereby decreasing the power of detecting the alternative.

This motivates us to develop a third approach for calibrating the p-value of the

LRT by searching from the end-points. The idea is now to compute the p-value as

if the search was over the union of the intervals from a×100 to min(β, 1−β)×100

percentiles and from max(β, 1−β)×100 to (1−a)×100 percentiles. Effectively,

the third approach computes the p-value as follows:

p2(c̃, β) =
√

2/π exp(−c̃2/2)(βT c̃ − βT /c̃ + 2/c̃),

where βT = log(min(β, 1−β)/(1−min(β, 1−β))−log(a/(1−a). We can similarly

show that E(p2|c̃) = p0.

We now use simulation to examine the empirical properties of the three

approaches for calibrating the p-value of the LRT. We simulated the following

threshold martingale difference process:

Xt = σ(Xt−1)ηt,

where σ(Xt−1) = {1 + γ × I(Xt−1 > r0)}σ2 and {ηt} are independent standard

normal random variables. The noise variance ratio ranges from 0.5 to 2, with

increment 0.1. We tried two different threshold values, namely, r0 = −0.8 and

0. The threshold value −0.8 corresponds to the 6.6 percentile with γ = 0.5

but increases to the 30.7 percentile with γ increasing to 2. On the other hand,

the threshold value 0 ranges within the 49–50 percentiles as the noise variance

ratio increases from 0.5 to 2. We considered four sample sizes, namely, 100,

200, 400 and 1,000. All experiments were replicated 10,000 times. Table 1

displays the empirical sizes of the LRT with the p-values computed by the three

proposed methods. For sample size 100, all result in higher rejection rates than

the nominal 5% level, especially for p1 and p2. However, for sample sizes ≥
200, the empirical sizes of the tests are increasingly closer to the nominal 5%.

Figures 3 and 4 display the empirical power curves of the LRT corresponding

to the three methods of calibrating the p-values; in comparing the power of the

three methods, we have corrected for slight size differences by shifting the p-

values so that they all have 5% empirical size. All methods enjoy good power for
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Table 1: Empirical size of the nominal 5% LRT with p-values computed by the three

proposed methods.

sample size p0 p1 p2

100 0.075 0.089 0.096

200 0.057 0.070 0.077

500 0.048 0.061 0.067

1,000 0.052 0.064 0.068

detecting threshold martingale differences, but as expected, p1 has the highest

power when the threshold is close to the median of the threshold variable, whereas

p2 dominates the other two approaches when the threshold is close to the extremes

of the data.

6 T-CHARM of some real time series

We now illustrate the application of the T-CHARM with some real time series.

The first example is a financial time series – the daily values of a unit of

the CREF stock fund over the period from August 26, 2004 to August 15, 2006.

The CREF stock fund is a fund of several thousand stocks. Since stocks are

traded only on the so-called trading days, which exclude weekends and holidays,

the CREF data do not change over the non-trading days. For simplicity, we

shall analyze the returns of the CREF data, namely the first differences of the

logarithmic transformed daily values, as if they were equally spaced. The CREF

returns, denoted by {Xt}, were earlier studied by Cryer and Chan (2008), who

fitted a GARCH(1,1) model in order to capture the conditional variance structure

of the data. See Figure 5. Changes in the conditional variance of the innovations

may be signified by substantial fluctuations in past returns. This suggests the

potential of using a more complex threshold variable, for example a function of

finitely many past returns, than simply some lag of X for financial data. We

therefore consider threshold variables of the form Wt−1 =
∑k

j=1 |Xt−j −Xt−j−1|,
i.e. the cumulative sum of the past k absolute changes in the daily returns.

(The choice of k = 3 will be justified as being sufficient for the CREF example.)
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Figure 3: Empirical rejection rate of the LRT ; all three approaches for calculating the

p-values are corrected to have exactly 5% empirical size by appropriately shifting the

p-values. The threshold equals 0. Solid lines are the power curves for the LRT with the

p-value computed by p0; dashed lines are those for p1 and dotted lines those for p2. The

four lines of each type, from bottom to top, correspond to sample size n = 100, 200, 500

and 1,000, respectively.
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Figure 4: Empirical rejection rate of the LRT ; all three approaches for calculating the

p-values are corrected to have exactly 5% empirical size by appropriately shifting the p-

values. The threshold equals -0.8. Solid lines are the power curves for the LRT with the

p-value computed by p0; dashed lines are those for p1 and dotted lines those for p2. The

four lines of each type, from bottom to top, correspond to sample size n = 100, 200, 500

and 1,000, respectively.
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Figure 5: CREF daily returns: black solid line; the threshold variables are plotted as

vertical gray lines on the bottom with the height of the lines proportional to the W ’s.

The horizontal line indicates the estimated threshold.

Specifically, we consider the following T-CHARM:

Xt =
m∑

i=1

σiI{ri−1 < Wt−1 ≤ ri}ηt (16)

The theories for quasi-likelihood estimation established in earlier sections can be

readily adapted to this model. We fit a two-regime T-CHARM with the threshold

searched between the 5 and 95 percentiles of the threshold variable Wt where

k = 3, by quasi-likelihood estimation: σ̂2
1 = 0.3765(0.0272), σ̂2

2 = 0.7420(0.147),

r̂ = 3.333, where the standard errors are enclosed in parentheses; see Figure 6.

Based on the method detailed in Section 4 and using the empirical standardized

residual distribution, we obtain (2.256, 4.024) as a 95% confidence interval of the

threshold parameter, which is asymmetric about the threshold estimate. Below,

model diagnostics suggests the normality of the residuals. Assuming normality,

the 95% confidence interval of the threshold parameter becomes (2.321, 4.144),

which is quite close to the preceding confidence interval. The presence of a

threshold is justified by the LR test whose p-value equals p0 = 0.018. The other
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Figure 6: Scatter diagram of the squared CREF daily returns versus the threshold

variable. Vertical line separates the the two regimes and the horizontal lines indicate the

estimated variances of the two regimes.

two approaches for calculating the conditional p-values yield p1 = 0.025 and

p2 = 0.012. The threshold is approximately the 88 percentile of the threshold

variable with the number of data falling in the two regimes being 438 and 58.

No further thresholds are needed based on LR tests for the presence of further

thresholds in each of the two regimes. The choice of k = 3 is justified by treating

k as a parameter and estimating it by profile quasi log-likelihood; upon fitting

the model with k ranging from 1 to 5 and identical effective sample size yields

the profile likelihood -25.54, -29.32, -25.00, -28.01 and -26.29, respectively, which

is maximized at k = 3.

Model diagnostics (Figure 7) shows that the model provides a good fit to

the data. In particular, the standardized residuals from the fitted T-CHARM

appear not to show any conditional heteroscedasticity as judged by the sample

ACF of their absolute values. This conclusion is corroborated by the McLeod-Li

test (see Li and Li, 1996) as well as a (unreported) Lagrange multiplier test for

residual ARCH effects; see Li (2004) and Ling and Tong (2011) for surveys on

goodness-of-fit tests in time series modelling. The standardized residuals also
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Figure 7: Upper left diagram shows the time plot of the standardized residuals from the

fitted T-CHARM. Upper right diagram is the sample ACF of the standardized residuals.

Lower left diagram plots the p-values of the McLeod-Li test for residual ARCH effects in

the residuals, based on the first k lags of the autocorrelations of the squared standardized

residuals, where k = 1, · · · , 50; the dotted horizontal line shows the 5% level. Lower right

diagram is the quantile-quantile normal score plot for the standardized residuals.
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appear to be normally distributed, as its quantile-quantile normal score plot is

quite straight.

Figure 8 shows the conditional variance processes from the fitted T-CHARM

0 100 200 300 400 500

0
1

2
3

4
5

6

t

D
ai

ly
 S

qu
ar

ed
 C

R
E

F
 R

et
ur

n

Figure 8: Fitted conditional variance process from T-CHARM (solid line) and that

of the GARCH(1,1) model (red line), with the squared CREF returns plotted as gray

background.

and the GARCH(1,1) model reported by Cryer and Chan (2008). They appear

to complement each other on a global scale. On a finer scale, it seems that the T-

CHARM captures some of the troughs during periods of high conditional variance

whereas the GARCH(1,1) model tends to smooth them away. On the other

hand, as three-parameter models, both models have log-likelihoods of similar

order of magnitude, bearing in mind their approximate nature. Figure 9 shows

the out-of-sample 1-step-ahead predictive performance of both models with fifty

new observations collected from August 16 to October 24 in the year 2006. It

plots the average cumulative predictive log-likelihood of the new observations;

their performances seem reasonably comparable with the T-CHARM performing

perhaps slightly better. Interestingly, all the fifty new observations fall into the

first regime. If we extend the out-of-sample comparison further, the GARCH(1,1)
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Figure 9: Average cumulative 1-step ahead predictive log-like likelihood, from the T-

CHARM (solid line) and the GARCH model (dotted line).

model begins to outperform the T-CHARM, but then the dependence structure

of the CREF series also experienced an unprecedented change as the market

was heading into the financial crisis in 2007–2010 (Figure 10). Since financial

markets are almost invariably nonstationary, it is wise to note the limitations of

stationary models for financial time series. At best, stationary models such as T-

CHARM and GARCH models merely serve to capture the approximate dynamics

of the conditional variance over a relatively stationary (therefore limited) period.

A really challenging research problem is to model the nonstationarity in the

conditional variance based on past data; this is a daunting task since market

collapses are often triggered by extraneous circumstances, e.g. the credit crisis

from 2007 to 2009.

In the next two examples, which lie outside economics and finance, each time

series has a non-trivial conditional mean structure that can be modelled by an

ARIMA model with possibly additive outliers, but the errors are conditionally

heteroscedastic white noise that we shall model by some T-CHARM. The pa-

rameters in the mean function are generally distinct from those parametrizing

the conditional variance function. Consequently, the mean structure may be es-
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Figure 10: Time plot of an extended daily CREF returns. The initial black solid line

shows the data initially analysed, the middle gray line corresponds to the period of out-

of-sample forecast and final black solid line draws the more recent data, which shows the

dramatic changes in the dependence structure of the CREF series as the market went

through the 2007-2010 financial crisis.
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timated first, by making use of the white-noise nature of the errors and ignoring

the conditional variance structure. Then the parameters of the conditional vari-

ance function can be subsequently estimated through a quasi-likelihood with the

ARIMA residuals treated as if they were the true innovations. It can be readily

checked that, under some mild regularity conditions, the mean parameters and

the variance parameters are asymptotically independent of each other, so that

the their standard errors can be obtained separately from each of the two steps.

The second example is a long time series of annual tree ring width (Figure

11), with the measurements taken from a tree in a location at high altitude in
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Figure 11: Time plot of the annual tree ring width.

Argentina. The time series spans over the period from year 441 to 1974 and it

was contributed by J. Boninsegna to the NOAA Paleoclimatology database

http://www.ncdc.noaa.gov/paleo/metadata/noaa-tree-2782.html.

An IMA(1,1) model is initially identified and fitted to the data with the MA

coefficient given by -0.6110 with standard error 0.0216. The residuals of the

fitted IMA(1,1) model appear to be white noise in the sense that the residual

ACF is only marginally significant at lag 11 and five higher lags out of the 100

lags examined. This observation is corroborated by the Box-Ljung test that is

based on the first k lags of the residual ACF with k ranging from 3 to 100. On

the other hand, it is unlikely that the residuals are independent as the absolute

residuals appear to be correlated; see Figure 12. We fit a two-regime T-CHARM
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Figure 12: ACF of the absolute residuals from the IMA(1,1) model fitted to the tree ring

data.

to the residuals to account for the conditional heteroscedasticity, with lag 1 of

the IMA(1,1) error as the threshold variable. The following parameter estimates

are obtained: σ̂2
1 = 0.03205(0.00153), σ̂2

2 = 0.05729(0.00893), r̂ = 0.2366 (95%

confidence interval: (0.1619, 0.3049)), which is approximately the 91 percentile;

see Figure 13.

The threshold structure is supported by the LR test for T-CHARM with p-

value p0 = 0.005. The other two methods of calculating the conditional p-values

yield p1 = 0.008 and p2 = 0.002. The first regime contains 1402 observations

while the second regime 131 observations. No further thresholds are needed by

reference to the LR test for the presence of further thresholds in each of the

two regimes. The fitted T-CHARM has successfully captured the conditional

heteroscedasticity in the data as there are no residual ARCH effects in the stan-

dardized residuals from the fitted T-CHARM, by reference to the McLeod-Li test

up to 100 lags. The fitted T-CHARM suggests that during fast-growing years,

tree growth is much more variable, with a variance that almost doubles that

during non-fast-growing years. What caused the observed variations is unclear,

but it may be related to the fact that over non-fast-growing regime the tree ring

width is bounded whereas this is not so in the fast-growing regime.

Next, we try to fit a GARCH model. The sample EACF of the absolute resid-

uals of the IMA(1,1) model tentatively suggests GARCH(1,2) and GARCH(2,2)

models, but only the ARCH(1) coefficient is found to be significant, at 5% level.
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Figure 13: Scatter diagram of the squared tree ring residuals versus the lag 1 of the resid-

uals, threshold variable. Vertical line separates the the two regimes and the horizontal

lines indicate the estimated variances of the two regimes.

Eventually we choose the GARCH(1,1) model whose conditional variance equals

ht = βht−1 + α0 + α1X
2
t−1 where Xt stands for the IMA(1,1) errors, as this

model passes the McLeod-Li test but the simpler ARCH(1) model does not.

The GARCH estimates, with their standard errors enclosed in parentheses, are

α̂0 = 0.0284(0.00656), α̂1 = 0.0987(0.0288) and β̂ = 0.0747(0.198). While the

T-CHARM has shed some light on the tree-growing process as we have seen, it is

unclear to us as to how to interpret the fitted GARCH(1,1) model. Finally, both

fitted models involve three parameters each with comparable quasi-likelihoods,

again bearing in mind their approximate nature.

The third example concerns the time series of waiting times between the

starts of two consecutive eruptions of the old faithful geyser. The data have been

extensively studied in the literature. We use the version of the data collected

from August 1–15, 1985; see Azzalini and Bowman (1990), Härdle (1991), the

recent review by Zucchini and MacDonald (2009, Chapter 10) and the references

therein. Besides the series of waiting time, the corresponding series of eruption

duration is also available, but, for simplicity, we shall confine our analysis to
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the waiting times. Figure 14 plots the scatter diagrams of the log waiting time

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−1 regression plot

zlag(x, k)

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o oo
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o o
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
oo

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oooo

o

o

o

o

o

o

o

oo

o o

o

o

o

o

o

o o

o

o

o
o

o

o

oo

o
o

o

o

o

o o
o

o

o

o

o

o
o

o

o

o

o

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−2 regression plot

zlag(x, k)

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

oo o
o
o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o o

o

o

o

o

o

oo

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo ooo

o

o

o

o

o

o

o

o o

oo

o

o

o

o

o

oo

o

o

o
o

o

o

o o

o
o

o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−3 regression plot

zlag(x, k)

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o oo
o
o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o o
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
oo

o

o

o

o

o

o o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
oo

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo oo

o

o

o

o

o

o

o

oo

oo

o

o

o

o

o

o o

o

o

o
o

o

o

oo

o
o

o

o

o

o o
o

o

o

o

o

o
o

o

o

o

o

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−4 regression plot

zlag(x, k)

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o o o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
oo

o

o

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
oo

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo oo o

o

o

o

o

o

o

o

o o

o o

o

o

o

o

o

oo

o

o

o
o

o

o

o o

o
o

o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−5 regression plot

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

oo o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o
o o

o

o

o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo oo

o

o

o

o

o

o

o

oo

oo

o

o

o

o

o

o o

o

o

o
o

o

o

oo

o
o

o

o

o

oo
o

o

o

o

o

o
o

o

o

o

o

3.5 4.0 4.5 5.0

3.
8

4.
0

4.
2

4.
4

lag−6 regression plot

oo

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o oo
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o o
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
oo

o

o

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
oo

o

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo oo o

o

o

o

o

o

o

o

oo

o o

o

o

o

o

o

oo

o

o

o
o

o

o

o o

o
o

o

o

o

o o
o

o

o

o

o

o
o

o

o

o

o

Figure 14: Lagged regression plot of the log waiting time against its lag k, k = 1, ..., 6.

Open circles are data and solid lines are nonparametric curve fits.

against its lag k, for k = 1, · · · , 6. The plot highlights three main features of the

data: (i) the waiting time is strongly associated with lag 1 values but much less

so with values at higher lags, (ii) the presence of conditional heteroscedasticity

and (iii) a number of outliers. The last two features seem to be largely ignored in

the literature, which generally focuses on nonparametric techniques and Markov

chain analysis.
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Preliminary statistical analysis suggests the possibility of an AR(1) model

plus additive outliers for the mean structure, which we then fit to the data

yielding the AR(1) coefficient estimate −0.571(0.0497) and mean 4.248 (0.00650)

and adjusted for five outliers at epochs 22, 37, 172, 237 and 266. The residuals

of the preceding model appear to be white, based on the Box-Ljung test up to

lag 50. However, the residuals are highly conditionally heteroscedastic: if the

previous waiting time is under-predicted, then the subsequent waiting time is

subject to much larger uncertainty; see Figure 15. We then fit a two-regime T-
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Figure 15: Squared AR(1) residual waiting time plotted against the lag-1 of the log

waiting time; vertical line separates the two regimes and horizontal lines indicate the

estimated variances of the two regimes.

CHARM with the lag 1 of the AR(1) errors as the threshold variable, giving the

following parameter estimates: σ̂2
1 = 0.0093(0.0011), σ̂2

2 = 0.037(0.0031), which

is almost four times larger than the variance of the lower regime, and r̂ = −0.072

(95% confidence interval: (−0.088,−0.058)), which is about the 34 percentile.

The existence of the threshold is supported by the LR test with p-value < 10−5,

for all three methods of calculation. And there is no need for more thresholds,

based on the LR test. The standardized residuals from the T-CHARM are no

longer conditionally heteroscedastic, based on the McLeod-Li test up to lag 50.

However, the standardized residuals seems to be somewhat heavy tailed based
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on the quantile-quantile normal score plot (not shown). Next, it seems that

the GARCH formulation is unsuited for the AR(1) residuals. We tried to fit a

GARCH(1,1) model to the AR(1) errors as suggested by the sample EACF of

the absolute residuals. Unfortunately, the quasi-likelihood estimation has failed

to converge, this remaining so even after simplifying the model to an ARCH(1)

model.

7 Discussion

We have presented the theory and practice of a viable alternative to the ARCH-

type models by going back to basics. It gives a simple and yet quite versatile

alternative mixing function in the approach to conditional heteroscedasity based

on an observable mixture of independent random variables. The model requires

minimal conditions for statistical inference and often offers interpretable results.

Computation is quite straightforward too.

The asymptotic results derived in Theorems 3.2 and 4.1 may provide a basis

for calculating the approximate confidence intervals of the threshold parameters.

Preliminary investigation of the two-regime case suggests that tabulation of the

relevant quantiles, based on Monte Carlo, is precise if the variances of the two

regimes are quite different, e.g. if the ratio of the smaller variance to the larger

variance is less than 0.5. However, tabulation loses its precision as the variance-

ratio approaches 1 because then the T-CHARM behaves more like a white noise

process, making the threshold parameter nearly non-identifiable. An interesting

research problem is to augment this approach with the asymptotic framework for

the case of nearly equal variances (Yao, 1987), with the ultimate goal of providing

confidence statements for the threshold parameters, see also Hansen (1997, 2000,

2011).

There are many different and interesting ways to generalize the above thresh-

old approach. Tong (2011) has described fruitful experiences. There are increas-

ing interests in modelling conditional variance clustering exhibited by random

functions with a multi-dimensional index set, due to the many applications, e.g.

image processing. Yan (2007) generalized the stochastic volatility approach in

time series to Markov random fields by modelling the logarithmic variance process
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as a conditional autoregressive (CAR) model (Besag et al. 1991). The T-CHARM

may be generalized to modelling nonlinear spatial conditional heteroscedascity.

We illustrate the basic idea with a simple example of modelling a random, noisy

picture punctuated by spatial clustering. Consider a random field {Xs, s ∈ S}
consisting of integer-valued random variables and S = {(i, j), i, j = 1, 2, · · · , n}
is a finite lattice of pixels. We adopt a hierarchical approach with the X’s spec-

ified as independent and marginally Poisson distributed with mean µs given the

latent process {µs, s ∈ S}; on the logarithmic scale, the latter is decomposed

into the sum log(µs) = ms + ǫs, where ms concerns the “mean” structure and ǫs

the “conditional variance” structure. The process {ms, s ∈ S} may be modelled

by a CAR model or some nonlinear generalization, so we set it to zero hence-

forth for simplicity. Spatial conditional heteroscedasticity may be captured by

the following spatial T-CHARM:

ǫs = σ(Ws)ηs, (17)

where σ(Ws) =
∑m

i=1 σiI(ri−1 < Ws ≤ ri),

Ws =

∑
s′∈N(s) |Xs′ − exp(ms)|∑

s′∈N(s) 1
, (18)

N(s) denotes the set of neighbouring pixels of s, e.g. s′ is a neighbour of s if its

L1-distance from s equals 1, η’s are i.i.d. standard normal random variables and

r’s the threshold parameters. The functional W attempts to measure the local

variation of the process, and the proposed T-CHARM the situation that high

local variation triggers a jump in the variance. The existence and uniqueness of

a joint probability distribution of X = (Xs, s ∈ S)T satisfying the given condi-

tional distributions can be established by considering an n2-dimensional Markov

chain Xt = (Xs,t, s ∈ S)T , t = 0, 1, · · · , whose transition probability kernel is the

composition of the conditional distributions specified by the spatial T-CHARM;

details will be reported elsewhere. Left side of Figure 16 shows a re-scaled re-

alization of a two-regime spatial T-CHARM, where r = 1.0, σ1 = 0.4, σ2 = 2σ1

and n = 50; the realization is re-scaled to have minimum 0 and maximum 1. The

realization is obtained by iterating the aforementioned Markov chain 1,000 times

and treating the last iterate as from the stationary distribution for the spatial

T-CHARM. Spatial clustering is apparent in the diagram, especially when com-
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Figure 16: Left diagram is a standardized realization of a two-regime spatial T-CHARM

with σ2 = 2σ1 and σ1 = 0.4. The values are standardized to make them lie between 0

and 1, and plotted in terrain colours; see the legend. About 24% of the data fall in the

regime corresponding to σ2 = 0.8. Right diagram is a standardized realization for the

case of σ1 = σ2 = 0.4.

pared with the right figure, where σ1 = σ2 so that that process is homoscedastic.

We remark that it is possible to extend some of the theoretical results obtained

earlier for model (6) to the spatial setting with discrete response variables, but

a thorough study awaits future investigation.

Appendix: Proofs of Theorems

A.1. Proof of Theorem 2.1

Because P is irreducible, it admits a unique left eigenvector of 1, say u, such that

u is a positive vector that sums to 1, and satisfies the condition

uτP = uτ .

Hence, P can be decomposed as

P = uuτ + Q, (19)

where for all v ∈ Rm, Qv = Pv − uτvu and hence Qu = 0 so that 0 is an

eigenvalue of Q. Note that any right eigenvector w of eigenvalue less than 1
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in magnitude is orthogonal to u. Consequently, Eqn. (19) implies that, for any

positive integer k,

P k = uuτ + Qk. (20)

Moreover, it is readily seen that the non-zero eigenvalues of Q are identical to

those of P . Consequently,

c(Q) = Qm−1 − c1Q
m−2 − . . . − cm−1I = 0.

Without loss of generality, assume that E(h(Xt)) = 0, otherwise we shall

subtract the nonzero mean from h and argue as below. Let uτ = (u1, . . . , um)

be the stationary probability vector of P , i.e. uτP = uτ . Further, let ν =

(ν1, . . . , νm) and ητ = (η1, . . . , ηm), where, for 1 ≤ j ≤ m, νj = E(h(σje))

and ηj = E(h(X0)I{X0 ∈ Rj}). It can be seen that the vector of stationary

probabilities u is orthogonal to the vector ν, by the following arguments.

0 = E(h(Xt)) = E(E(h(Xt)|Xt−1)) =
m∑

j=1

ujE(h(σjet)) = uτν.

It can be checked that the lag-k autocovariance of {Yt} equals

γk = E(Y0Yk) = E(Y0E(Yk|X0, Xk−1)) = ητP k−1ν = ητQk−1ν,

where the last equality follows from Eqn. (20) and the orthogonality of u and

ν. The validity of the Yule-Walker equation defined by Eqn. (3) for the {Yt}
process then follows from the equation c(Q) = 0. This completes the proof of

Theorem 2.1. �

A.2. Sketch of Proof on the Asymptotic Independence of the

Maximum and its Location of an OU process over a Sufficiently

Large Interval.

We adapt some arguments in Berman (1971) who derived the asymptotic dis-

tribution of the maximum of a stationary Gaussian process. It is readily seen

from the proof of Theorem 3.1 in Berman (1971) that, under some regularity

conditions including a certain asymptotic rate of the autocorrelation function

with lag approaching 0 for which the OU process holds, with a fixed h > 0 and
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T tending to infinity, the maximum of such a process over the interval [0, T ]

is asymptotically equivalent to the maximum of the maxima of the process over

[ih, (i+1)h], i = 0, .., T −1, with the maxima over the unit intervals being asymp-

totically independent. (With no loss of generality, T may be assumed to be a

positive integer.) Hence, the maximum of the process over [0, T ] and the location

of the maximum up to an uncertainty of h are asymptotically independent. By

passing to the limit with h → 0, the maximum of the process over [0, T ] can be

shown to be asymptotically independent of the location of the maximum, with

the latter uniformly distributed, for large T . The stationarity of the OU process

then allows the result to hold for any sufficiently large, finite interval in lieu of

[0, T ]. �
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Rabemananjara, R. and Zaköıan, J.M. (1993). Threshold ARCH models and

asymmetries in volatility. J. Appl. Econometrics 8, 31–49.

Seijo, E. and Sen, B. (2011). A continuous mapping theorem for the smallest

argmax functional. Electron. J. Stat. 5, 421–439.

Stenseth, N.C. (2009). The importance of TAR-modelling for understanding

the structure of ecological dynamics: the hare-lynx population cycles as an

example. Exploration of a nonlinear world. ed. by K.S. Chan, Singapore:

World Scientific.

Tong, H. and Lim, K.S. (1980). Threshold autoregression, limit cycles and

cyclical data (with discussions). J. R. Statist. Soc. B. 42, 245–292.

Tsay, R. S. and Tiao, G. (1984). Consistent estimates of autoregressive pa-

rameters and extended sample autocorrelation function for stationary and

nonstationary ARMA Models. J. Amer. Statist. Assoc. 79, 84–96.



46 KUNG-SIK CHAN, DONG LI, SHIQING LING AND HOWELL TONG

Tong, H. (1978). On a threshold model. Pattern recognition and signal process-

ing. (ed. C.H.Chen). Amsterdam: Sijthoff and Noordhoff.

Tong, H. (1982). Discontinuous decision processes and threshold autoregressive

time series modelling. Biometrika 69, 274-276.

Tong, H. (1990). Nonlinear time series. A dynamical system approach. Oxford:

Oxford University Press.

Tong, H. (2011). Threshold models in time series analysis – 30 years on. Stat.

& Its Interface. 4, 107–118.

Xia, Y., Tong, H., Li, W.K. and Zhu, L-X. (2002). An adaptive estimation of

dimension reduction space. J. R. Statist. Soc. B. 64, 363–410.

Yan, J. (2007). Spatial stochastic volatility for lattice data. J. Agric. Biol.

Env. Stat. 12, 25–40.

Yao, Y. C. (1987). Approximating the distribution of the maximum likelihood

estimate of the change-point in a sequence of independent random variables.

Ann. Statist. 15, 1321–1328.

Zaköıan, J.M. (1994). Threshold heteroskedastic models. J. Econom. Dynam.

Control 18, 931–955.

Zucchini, W. and MacDonald, I. (2009) Hidden Markov models for Time Series:

an Introduction Using R, London: Chapman & Hall/CRC.

Department of Statistics & Actuarial Science, University of Iowa, IA, 52242,

USA.

E-mail: kung-sik-chan@uiowa.edu and li20072010@gmail.com

Department of Mathematics, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong.

E-mail: maling@ust.hk

Department of Statistics, London School of Economics and Political Science.

E-mail: howell.tong@gmail.com




