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Abstract

This paper is a selective review of the development of the threshold model in
time series analysis over the past 30 years or so. First, it re-visits the motivation
of the model. Next, it describes the various expressions of the model, highlighting
the principle underlying them and the main probabilistic and statistical properties.
Finally, after listing some of the recent offsprings of the threshold model, it finishes
with some on-going research in the context of threshold volatility.
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1 Introduction

On the 19th March 1980, the paper entitled Threshold Autoregression,
Limit Cycles and Cyclical Data was read to the Royal Statistical Soci-
ety at a meeting organized by the Research Section of the Society and
chaired by Professor Peter Whittle. It presented the first comprehen-
sive account of the research that I had been conducting on nonlinear
time series analysis till that date, sometimes assisted by my research
students on the numerical simulation. Before this paper, I had already
presented rudiments of the approach based on piecewise linearization,
with references given in the above paper.

In the Confucian spirit, let me start by recalling some of the back-
ground of the approach. To avoid repetition of Tong (2007a), I shall
now reduce reminiscences but increase technical details. Nevertheless,
I shall try to maintain a relaxed style. To keep the paper within rea-
sonable length, some of the topics will have to be treated sparingly or
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not at all.

Cycles have been among the key objects of attention since the be-
ginning of time series analysis. Of course, models for periodic oscilla-
tion have a much longer history in science. School physics has taught
many that possibly the simplest model that can generate periodic os-
cillations is Simple Harmonic Motion (SHM):

d2x(t)

dt2
= −ω2x(t),

where ω is a real constant. This is an elementary linear differential
equation. It admits the solution

x(t) = Acos(ωt) +Bsin(ωt),

where the arbitrary constants A and B are fixed by the initial condi-
tion, e.g. x(t) and dx(t)/dt at t = 0. However, not so well-known is
the fact that this highly idealized model is not practically useful, be-
cause different periodic oscillations result from different initial values.
Thus, SHM does not produce a period that is robust against small
disturbances to the initial value. Further, SHM assumes the absence
of friction. In the presence of the latter, SHM is usually modified by
including a linear function of the velocity. In that case, a stable solu-
tion is a damped sinusoid and will tend to a constant, the steady state,
as t tends to infinity. Evidence suggests that the British statistician,
George Udny Yule, was well acquainted with the above physics and
mathematics in his search for a statistical model for the sunspot cycles,
although he worked in discrete time. Therefore to generate sustained
(quasi-)periodic oscillations, he introduced in Yule (1927) random dis-
turbances (now more commonly called the innovations) leading to the
celebrated linear autoregressive model, or the AR model for short.
The associated physical set-up has been affectionately referred to as
Yule’s (heavy) pendulum bombarded by some pea-shooters. Curi-
ously, I have not been able to locate the pea-shooters in Yule (1927);
the earliest reference that I can trace is Jeffreys (1940).

As I have said elsewhere (Tong, 1990, p.20-21), it was perhaps not
surprising that Yule chose a linear model because it was unlikely that
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he could be aware of nonlinear oscillations. After all, the theory of non-
linear oscillations was still at its early stages of development around his
time. In fact, it was only in 1925 that A. A. Andronov, the prominent
Russian oscillation theorist, recognized the role of Poincaré’s geometric
notion of limit cycle. This important notion relates to the existence
of sustained periodic oscillations independent of initial conditions. To
exhibit a simple example of existence, let me first recall the simplest
first order linear differential equation:

dx(t)

dt
+ αx(t) = k, ( 1.1)

where α and k are positive real constants. Trivially, the solution is
x(t) = Ce−αt + k/α, which tends to k/α, a constant, as t tends to ∞.
Similarly, the same equation with k = 0 has the solution x(t) = Ce−αt,
which tends to zero as t tends to ∞. Thus, each of the above stable
equations admits the steady state solution of a constant, which is a
general property of all stable linear differential equations. (The con-
stant is called a limit point, which represents a state of static equilib-
rium.) Let me next consider a nonlinear differential equation of the
following piecewise linear form

(
d

dt
+ α)x(t) =

 0 if x(t) ≥ h,

k if x(t) < h.
( 1.2)

Here, k, h and α are positive real constants with h > k/α. By inte-
grating the differential equation piece by piece, it is not difficult to
show that the solution of the piecewise linear differential equation will
quickly converge to a periodic function of a curved saw-tooth shape
with maximum value h+(k/α), which decays to the minimum value h,
exponentially fast with rate α, over a period of duration − 1

αln(1−
k
αh)

and independent of the initial value x(0). In other words, the steady
state is a limit cycle. Note that the steady state for the dynamics in-
side each regime (i.e. above or below h) is a limit point; yet by dividing
the state space into two regimes, each regime being governed by dif-
ferent simple linear dynamics, a new steady state of a fundamentally
different character can be created. This is the magic of nonlinearity!
For further exposition of piecewise linear differential equations, see
Andronov and Khaikin (1937). The essential point is that a limit cy-
cle can be generated by a dynamical system only if there is a balance
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between energy absorption and energy dissipation. Specifically, the
supply of energy k in the lower regime balances the exponential en-
ergy dissipation in the upper regime; this balance of energy results in
a steady periodic oscillation after some initial transients. The system
is then in a state of dynamic equilibrium.

The latter part of the last century witnessed the rapid development
of an even more exotic form of stable oscillation called chaos. Chaos
manifests itself in a time series that is almost undistinguishable from
a stochastic process. The apparent randomness is caused by sensi-
tivity of the dynamical system to initial conditions. Of course, limit
cycles and chaos also exist in nonlinear difference equations; piecewise
linear difference equations are especially important as pseudo-random
number generators, which are actually chaos generators. However, the
analysis as well as the topology is more complicated. See, e.g., Tong
(1990) and Chan and Tong (2001).

2 Limitations of Linear Time Series Models: Examples

Example (2.1): Seiche Record at Island Bay, Wellington, New Zealand

Whittle (1954) analyzed the seiche time series of 660 observations
at 15 second intervals of the water level in a rock channel at Island
Bay on the Wellington coast in his native country, New Zealand.

In Fig. 1, I have reproduced the spectral density function estimate
obtained by Akaike (private communication) using a linear AR(k)
model with k determined by AIC. (Whittle’s original estimate is a
smoothed periodogram using the Bartlett window.) Whittle noted a
significant arithmetical relationship among the periods of the promi-
nent peaks: 25 = 1 × 11 + 14; 36 = 2 × 11 + 14; 48 ≈ 3 × 11 + 14.
Such a relationship is beyond the scope of linear models. In fact, he
pointed out that this relationship is due to nonlinearity and cited none
other than Andronov and Chaikin (1937). He went on to give some
detailed analysis based on a piecewise linear differential equation, of
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Figure 1: Estimated spectral density function via AR modelling

which (1.2) is the simplest special case. As far as I know, Whittle
(1954) was the earliest recognition of the importance of the threshold
idea in time series modelling.

Example (2.2): Jokulsa River System, Iceland

Tong et. al. (1985) studied the Jokulsa river system, consisting of
three time series in 1972: river-flow, precipitation and temperature.
Figure 2 gives a nonparametric regression of river-flow on temperature.
It shows clearly the effect of the melting of glaciers in the catchment
area of Jukulsa river on the latter’s flow. The nonlinearity is a result of
the phase change from ice to water. The inadequacy of linear models
is self-evident in this case.

Example (2.3): MacKenzie River Lynx Data

In the early 1950s, the Australian statistician, Pat Moran, spent
many of his working hours at the library of the Department of Zool-
ogy, Oxford, which became his office. As a result, he became interested
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Figure 2: Nonparametric regression of Jokulsa river-flow on temperature
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Figure 3: Annual trappings of lynx in the MacKenzie River district on log10 scale

in ecology and met the Oxford ecologist, Charles Elton. In particu-
lar, he was interested in the famous 10-year lynx cycle, which was
and still is of immense interest to the ecologists. In Moran (1953a),
among the many available annual records of lynx trappings, he chose
the longest one, namely the 1821-1934 record of the MacKenzie River
district in Canada. He remarked on the asymmetry of the lynx cycle.
The asymmetry can be seen very clearly if the vertical scale is appro-
priately chosen as in Fig. 3.

He fitted the following linear AR model to the data:

Xt = 1.4101Xt−1 − 0.7734Xt−2 + εt,

where Xt = log10(Number of lynx trapped in yeart) − 2.9036. In his
diagnostic checking, he noticed the ‘curious feature’ that the sum of
squares of the residuals corresponding to Xt values above zero is 1.781
while that corresponding to Xt values below zero is 4.007. He consid-
ered the difference significant. It seems to me that this was one of the
earliest observations of conditional heteroscedasticity in real time se-
ries analysis. In fact, he remarked that lynx dynamics ‘would have to
be represented by nonlinear equations.’ (Moran, 1953b, p.292). I have
presented several significant signatures of non-normality and nonlin-
earity of the lynx dynamics in Tong (1990). For example, a clear
signature of non-normality is the bi-modality of the marginal distri-
bution (Fig. 4) of the data, which is present even after the logarithmic
transformation. In fact, the table below shows that the test for multi-
modality due to Chan and Tong (2004), which extends Silverman’s
test to dependent data, lends support to bi-modality.
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Figure 4: Histogram of logarithmically transformed lynx data

No. of modes 1 2 3 4

P-values 0.03 0.45 0.72 0.67

The shortcomings highlighted in the above examples and elsewhere
(e.g. Tong, 1990) pressed home the case for nonlinear time series mod-
elling with irresistible force in the late 1970s and early 1980s. The force
has remained to the present time.

3 The Threshold Model

There are many different but equivalent ways to express a threshold
model, each having its advantages, depending on the context and pur-
pose. Let me start with a general form of a threshold autoregressive
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model or a TAR model for short:

Xt = a
(Jt)
0 +

p∑
i=1

a
(Jt)
i Xt−i + b(Jt)εt, ( 3.1)

where εts are iid (0, σ2) and {Jt} is an (indicator) time series taking
values in {1, 2, . . . , J}. The indicator time series acts as the switching
mechanism. Note that the TAR model can be easily extended to a
threshold autoregressive moving average model (TARMA model for

short) by replacing b(Jt)εt by
∑q

j=0 b
(Jt)
j εt−j. Further extension to in-

clude some exogenous time series is obvious and may be assigned the
acronym TARMAX.

The basic idea of a threshold model is piecewise linearization through
the introduction of the indicator time series, {Jt}. I have called this
idea the Threshold Principle for easy reference. Numerous special
cases are immediate and I shall describe some of them later. First, I
should, however, stress that a special case is just that and should not
be confused with the general case. It is unfortunate that perhaps be-
cause of its popularity, the self-exciting threshold autoregressive model
(to be described later) has sometimes been presented as if it consti-
tutes the entire family of TAR models, which it does not.

To simplify the description, I shall usually exhibit only the sim-
plest/low order cases, namely p = 1 or p = 2, noting that the case
with higher p can be described similarly. I shall also minimize the use
of super-scripts. Clearly, the time series {Jt} could be either observ-
able or hidden. In fact, it could also be a mixture of the two. Let me
start with the case with observable Jt.

(O1) SETAR model: Suppose that J = 2. Let Jt = 1 if Xt−d ≤ r

and Jt = 2 if Xt−d > r for some real threshold r and some positive
integer d, called the delay parameter. The acronym stands for self-
exciting TAR model. This SETAR model can also be expressed in the
following equivalent form:

Xt =

 α+ βXt−1 + εt if Xt−d ≤ r;
γ + δXt−1 + ϕεt if Xt−d > r,

( 3.2)
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where α, β, γ, δ, and ϕ are real constants.

(O2) TARX model: This is a special case of the TARMAX model,
without the moving average component. Let Jt be a measurable func-
tion of one or more exogenous and observable time series. Previously,
Tong and Lim (1980) coined the acronym TARSO to stand for a TAR
system (open loop); they were thinking in terms of control systems.

In the following models, {Jt} is independent of {Xt} and not ob-
served.

(H1) EAR model: Let {Jt} be a sequence of independent and identi-
cally distributed random variables such that Jt = 1 with probability
1− α, Jt = 2 with probability α, and (0 < α < 1). Consider the TAR

model with a
(Jt)
0 ≡ 0 and b(Jt) ≡ 1,

Xt = a
(Jt)
1 Xt−1 + a

(Jt)
2 Xt−2 + εt, ( 3.3)

where 0 ≤ a
(1)
1 < 1, a

(2)
1 = 0, a

(1)
2 = 0 and 0 ≤ a

(2)
2 < 1. This special

case of the TAR model is an example of the EAR model proposed and
first studied by Lawrance and Lewis (1980), who were interested in
identifying appropriate distributions for εt so that Xt has a (negative)
exponential (marginal) distribution. The acronym stands for expo-
nential AR. The connection between the EAR model and the TAR
model was first noted by Tong (1983, p. 63) and later exploited by
Chan (1986, Ch. 4; 1988) to extend the EAR model to higher orders.

(H2) Markov Chain Driven TAR model or Hidden Markov Switching
model: Let {Jt} be a finite state Markov chain. This model was first
proposed by Tong and Lim (1980, p. 285 line -12). It includes (H1) as
a special case. Tyssedal and Tjøstheim (1988) was probably the first
paper that studied this model in some depth, including an application
to stock prices. Later Hamilton (1989) introduced the model, which
he called the Markov switching model, to the econometric community.
He did not refer to Tyssedal and Tjøstheim (1988) but referred to the
Markov chain driven TAR model of Tong (1983, p. 62). However, he
overlooked the fact that the Markov chain for the above {Jt} was, as
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in a general TAR model, allowed to be hidden and was hidden. In
fact, the overlooking could have been avoided if he had noticed Tong
(1983, p. 63) or Chan (1986, 1988), to which I have referred in (H1),
or Tong (1983, 276-277), to which I shall refer in model (P1).

The case with {Jt} partially hidden has been explored only par-
tially.

(P1) Suppose that J = 2 and Jt is a measurable function of Xt−d and
Ut, where {Ut} is a hidden (strict) white noise process, independent
of {Xt} and has distribution Fu, so that for some delay d, Prob[Jt =
2|xs, s < t] = Fu(xt−d), and Prob[Jt = 1|xs, s < t] = 1 − Fu(xt−d).
Also, conditional on {Xt}, {Jt} is a sequence of independent random
variables. I formerly called a model of this form a fuzzy extension of
the SETARmodel in Tong (1983, p.276-277). I shall return to a closely
related extension in the next paragraph. I think it is worthwhile to ex-
plore other measurable functions for Jt, in which, e.g., the hidden {Ut}
can be more general than a white noise process. The resulting mod-
els can be perhaps better called partially-hidden switching models; the
switching can be Markovian or non-Markovian. It seems to me that
the TD-SAR model of Wu and Chen (2007) is moving in this direction.

Model (3.2) can also be written in the equivalent form

Xt = (α + βXt−1 + εt)I(Xt−d ≤ r)+

(γ + δXt−1 + ϕεt)(1− I(Xt−d ≤ r)), ( 3.4)

where I(A) is an indicator function such that I(A) = 1 if A occurs
and I(A) = 0 otherwise. In some applications, it might be more ap-
propriate to replace the ‘hard thresholding’ due to I by some ‘soft
thresholding’. One way to effect the latter is to replace the step func-
tion I(Xt−d ≤ r) by a sufficiently smooth function (Chan and Tong,
1986a, esp. 187), e.g. a continuous cumulative distribution function,
say F ({Xt−d − r}/σ); the latter includes the former as a limiting case
upon taking σ to zero. Chan and Tong (1986a) were the first to
propose and develop these soft thresholding models under the name
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of smooth threshold autoregressive (STAR) models. They have given
quite a comprehensive account of the probabilistic structure and sta-
tistical inference of these models. The STAR models have attracted
many followings in econometrics, e.g., Franses and van Dijk (2000).
Note that econometricians have changed the label ‘threshold’ to ‘tran-
sition’.

Clearly, the right hand side of (3.4), with εt suppressed, is discon-
tinuous. By judiciously constraining the parameters, Chan and Tsay
(1998) have studied a continuous SETAR model of a form first men-
tioned in Tong (1983, p.276). More recently, Xia and Tong (2010) have
considered, among other nonlinear state-space models, an innovation
free SETAR model, which is observed with observation error:

Xt = (α+ βXt−1)I(Xt−d ≤ r)+

(γ + δXt−1)(1− I(Xt−d ≤ r)), ( 3.5)

and Yt = Xt + εt, where {εt} is a white noise process independent of
the unobservable {Xt}.

Although my review is mostly concerned with discrete-time time
series analysis, I think it appropriate to make a few remarks on the
continuous-time case. Of course, a natural setting for the continuous-
time case is the stochastic differential equation (SDE). There is a huge
literature on SDEs and I shall leave the topic to the experts, except to
mention Tong and Yeung (1991) and Brockwell and Williams (1997),
who studied TAR models in continuous time, being primarily moti-
vated by the analysis of unequally spaced time series data. Recent
interests in high frequency data analysis add to the importance of the
SDEs.

4 Some Probabilistic Properties

4.1 Ergodicity
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The first question for any time series models is the existence of sta-
tionary distributions. The case of linear ARMA models is now well
understood. For nonlinear time series models, the situation is much
more complicated and the results are incomplete to-date. Of course,
it is clear that threshold MA models are strictly stationary. For non-
linear AR models, some general results are available by treating them
as Markov chains with states in a Euclidean space. A powerful tool
is the drift criterion initiated by Foster (1953) in queueing theory and
later more fully developed by Tweedie (1975) and Nummelin (1978,
1984). The basic idea is to first introduce the so-called small sets,
which play the role of discrete states, then study their irreducibility
and finally check if there is a drift towards the ‘centre’ of the state
space. For more detail of the drift criterion with special reference to
nonlinear time series, see e.g. Tjøstheim (1990), and Tong (1990, esp.
Appendix 1 by K. S. Chan).

A key notion in the drift criterion approach is the so-called g-
function, the specific choice of which is not always obvious. However,
by interpreting it as a ‘generalized’ energy function, Chan and Tong
(1985) has established a link between the stability of a deterministic
system and the ergodicity of a stochastic system. Essentially, they
have shown how the existence of a Lyapunov function for the former
can be exploited to provide the g-function to effect the drift criterion
for the latter. The deterministic system is obtained by reducing the
variance of the innovation of the nonlinear AR model to zero. They
call the resulting deterministic system the ‘skeleton’ of the nonlinear
AR model. (There is an interesting connection between the skeleton
and the Kolmogorov construction in the chaos literature. A deter-
ministic dynamical system typically admits more than one invariant
measure. To obtain the ‘physically meaningful’ invariant measure,
the Kolmogorov construction puts stochastic noise into the determin-
istic dynamical system. This produces a unique invariant measure if
the stochastic system is ergodic. Then, the noise is reduced to zero
and the limiting invariant measure is taken as the physically mean-
ingful invariant measure.) The exploitation can sometimes facilitate
the checking of stationarity of a complex nonlinear AR model because
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of the existence of a wealth of knowledge on stability in the applied
mathematics and engineering literature. For recent developments of
the skeleton approach with special reference to TAR models, see Cline
(2009). For recent developments of the related area of stochastic sta-
bility, see Meyn et al. (2009).

To give a flavour of the approach, I recall the following theorem due
to Chan and Tong (1985). First, let me state Condition A. Note that
the first two parts concern the skeleton and its stability while the last
part concerns the stochastic noise.

Condition A:

A1. T is Lipschitz continuous over Rm, that is ∃M > 0, such that
∀x,y ∈ Rm, ∥T (x)− T (y)∥ ≤M∥x− y∥.

A2. T (0) = 0 and ∃K, c > 0 such that ∀t ≥ 0, and starting with
x0 ∈ Rm, ∥xt∥ ≤ Ke−ct∥x0∥, where ∥.∥ denotes the Euclidean norm in
Rm.

A3. Either {εt} are independent identically distributed random vari-
ables, the marginal distributions of which are absolutely continuous
(with respect to the Lebesgue measure) and have each an everywhere
positive probability density function over Rm with E∥εt∥ <∞.

Or εt = (et, 0, . . . , 0)
′ with {et} being independent identically dis-

tributed random variables, each having an absolutely continuous dis-
tribution function with an everywhere positive probability density
function over R and E|et| <∞.

Theorem 4.1: Under condition A, the Markov chain with state space
Rm and given by

Xt = T (Xt−1) + εt, t ≥ 1, T : Rm → Rm

is geometrically ergodic.
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The example below re-visits the case studied by Petruccelli and
Woolford (1984) and highlights the facility that the above theorem
can sometimes provide.

Example 4.1:

xt =

 αxt−1 if xt−1 > 0
βxt−1 if xt−1 ≤ 0.

Clearly, |α| < 1 and |β| < 1 ⇒ xt → 0 as t→ ∞. As it will be shown
later, stationarity region can be considerably bigger on the (α, β)-
space.

Case (i): α > 0, β > 0
If x0 > 0, then xk = αkx0, k = 1, 2, . . .. Stability requires α < 1

so that xk → 0 as k → ∞. If x0 < 0, then xk = βkx0, k = 1, 2, . . ..
Stability requires β < 1 so that xk → 0 as k → ∞.

Case (ii): α > 0, β < 0
If x0 > 0, then xk = αkx0, k = 1, 2, . . .. Stability requires α < 1

so that xk → 0 as k → ∞. If x0 < 0, then x1 = βx0(> 0); x2 =
αx1(> 0); x3 = α2x1(> 0); . . . So xk = αk−1x0, k = 2, 3, . . .. Stability
requires α < 1 so that xk → 0 as k → ∞.

Case (iii): α < 0, β > 0
By symmetry with case (ii), it is required that β < 1.

Case (iv): α < 0, β < 0
xk = αβxk−2, k = 2, 3, . . . Stability requires αβ < 1 so that xk → 0

as k → ∞.

Putting everything together, the condition can be relaxed for sta-
bility of the skeleton from |α| < 1 and |β| < 1 to α < 1, β < 1 and
αβ < 1, the latter being considerably bigger. (Note that the above
argument has effectively used a Lyapunov function, V (x), of the form:
V (x) = ax for x ≥ 0 and b|x| for x ≤ 0, where a > 0, b > 0, 1 > α >

−a/b, 1 > β > −b/a.) Thus, it can be concluded that, under the same
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condition on α and β, the SETAR model

Xt =

 αXt−1 + εt if Xt−1 > 0
βXt−1 + εt if Xt−1 ≤ 0,

where εt ∼ IID(0, σ2) with an everywhere positive probability density
function is geometrically ergodic. The model is then strictly station-
ary if X0 has the unique invariant measure. (Note: σ2 need not be
finite.) Using the so-called inverse theorems in stability theory, the
necessity of the condition can also be established.

For more complicated nonlinear AR models, sometimes ingenuity
may have to be exercised or searched in the applied mathematics and
engineering literature to produce one or more appropriate Lyapunov
functions. Even if this fails, running the noise-free skeleton with a
variety of initial values can often be quite informative.

4.2 Stationary Distributions

Under strict stationarity and conditionally homoscedastic noise, the
probability density function (pdf), say Π(x), (assumed to exist), of a
nonlinear AR model of order 1 satisfies the following integral equation:

Π(x) =
∫ ∞

−∞
Π(y)pε(x− f(y))dy, ( 4.1)

where pε(·) denotes the pdf of the innovation.

Analytic solutions of such equations rarely exist in close form; nu-
merical solutions are usual. Even for strictly stationary linear AR
models, the situation can be non-trivial: although the Gaussian solu-
tion is well known for the case with Gaussian innovation, an analytic
solution may not always be possible for the case with non-Gaussian in-
novation. For nonlinear AR models, analytic solutions are even rarer.
However, analytic solutions are useful when they do exist. They can be
used, among others, to check the efficacy of numerical techniques sug-
gested for solving the above integral equation and to provide stochastic
models and insights for some of the newer distributions proposed in
the literature.
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Example 4.2 (A special SETAR model):

Xt = −α|Xt−1|+ εt; |α| < 1,

where pε(·)) is assumed to be symmetric about the origin. Exploiting
the symmetry of the autoregressive function, Chan and Tong (1986b)
showed how the nonlinear integral equation for the stationary distri-
bution could be solved by reference to a linear AR model:

Π(y) =
∫ ∞

−∞
Π(x)pε(y + α|x|)dx

=
∫ ∞

0
Π(x)pε(y + αx)dx+

∫ 0

−∞
Π(x)pε(y − αx)dx

=
∫ ∞

0
Π(x)pε(y + αx)dx+

∫ ∞

0
Π(−x)pε(y + αx)dx

= 2
∫ ∞

0
Π̄(x)pε(y + αx)dx,

where

2Π̄(y) = Π(y) + Π(−y) = 2
∫ ∞

−∞
Π̄(x)pε(y + αx)dx,

corresponding to the integral equation for the stationary linear AR(1)
model with parameter α.

If εt ∼ N(0, 1), then Π̄(x) is the pdf for N(0, 1
1−α2 ), and so

Π(x) =

√√√√2(1− α2)

π
exp{−1

2
(1− α2)x2}Φ(−αx). ( 4.2)

Andel et al. (1984) obtained the same solution by postulating and
verifying it. Figure 5 shows the skewness of the solution. By vary-
ing the value of α, a family of skew densities can be produced that
includes the normal at α = 0. In fact, this SETAR model provides a
stochastic model that can be used to underpin the so-called family of
‘skew-normal distributions’ advocated by Azzalini (1985). These dis-
tributions were apparently first introduced by O’Hagan and Leonard
(1976) in a Bayesian context. For multivariate time series, there are
many more groups of symmetry available than the above reflexive sym-
metry. Chan and Tong (1986b) also showed how similar exploitation
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Figure 5: Stationary distribution of Example 4.2

could be made of these. I think that some of their results are rele-
vant to developing multivariate generalizations of skew-normal distri-
butions, skew-t distributions and others, although they do not seem
to have been followed up for the purpose.

Example 4.3 (A piecewise constant AR model):

This is a particularly simple SETAR model.

Xt = b+ (a− b)I(Xt−1 < 0) + εt, ( 4.3)

where εt ∼ N(0, 1). The stationary pdf is a mixture of Guassian dis-
tributions (-I learnt this result from John Pemberton):

Π(x) = Aϕ(x− a) + (1− A)ϕ(x− b), ( 4.4)

where A = Φ(−b)/{1− Φ(−a) + Φ(−b)}.

Example 4.4 (A martingale difference model):
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This is another simple special case of the SETAR model (Tong,
2007b).

Xt =


εt if Xt−1 ≤ 0,

βεt if Xt−1 > 0,
( 4.5)

where {εt} is standard Gaussian white noise. Simple calculation yields
the stationary marginal pdf

f(x) =
1

2
[ϕ(x) +

1

β
ϕ(
x

β
)], −∞ < x <∞, ( 4.6)

where ϕ(·) denotes the pdf of the standard normal, giving another
mixture of standard Gaussian distributions. Clearly, it is leptokurtic
for β ̸= 1. I shall return to this model in Section 7.

Once the marginal distribution is found, then the next job would
be the joint distributions and the conditional distributions. The con-
ditional distributions are of particular relevance to prediction and are
sometimes called the predictive distributions. In fact, the derivative of
the m-step-ahead predictive distribution, with respect to the ‘present’
datum, can be used to form the basis of a stochastic extension of the
notion of Lyapunov exponent that characterizes the initial-value sen-
sitivity of deterministic dynamical systems. (Yao and Tong, 1994).

To evaluate more-than-one-step-ahead predictive distributions ex-
actly is very challenging for a general nonlinear time series model.
Fortunately, for SETAR models, the piecewise linearity coupled with
the Markovian structure can be exploited to produce some exact so-
lutions. Let me explain. Suppose a stationary SETAR model of the
form (3.2) has been fitted to some real data and is now taken, for the
exercise, as the true model. Then for 1 ≤ m ≤ d, the m-step-ahead
predictive distribution of Xt+m given Xs, s ≤ t can be expressed ex-
actly as anm-fold convolution of the distribution of ε with itself, up to
a suitable scaling factor by ϕ. For m > d, the situation is more com-
plicated, although there is always the Chapman-Kolmogorov equation
as a last resort. However, for cycling data with an approximate pe-
riod of say θ, I would suggest that the SETAR model be refitted now
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with delay parameter fixed at d + θ. Then, under stationarity, the
above convolution solution could still be used to give a reasonable ap-
proximate solution for cases with m ∈ [d + 1, d + θ]. How good the
approximation is depends on how strongly cyclical the data are. In
principle, the method can be extended to cover further periods but it
is expected that the approximation will deteriorate rapidly, unless the
data are very strongly cyclical. The above suggestion rests heuristi-
cally on the notion of cyclically moving subsets in Markov chain due
to W. Doeblin (See, e.g., Doob, 1953), which I have exploited in Tong
(1983) for point predictors.

4.3 Invertibility and Irreversibility

Invertibility concerns the ability to express the innovation in terms
of present and past observations. The issue for nonlinear ARMA mod-
els (including TARMA models) is non-trivial and has attracted some
attention recently. For the following threshold MA model, Ling et al.
(2007) have obtained sufficient and almost necessary conditions.

Xt = {ϕ0 +
k∑

j=1

ψjI(rj−1 < Xt−1 ≤ rj)}εt−1 + εt, ( 4.7)

where −∞ = r0 < r1 < · · · < rk = ∞. Let Fx(·) denote the distribu-
tion function of Xt. They proved the following theorem.

Theorem 4.2: Model (4.7) is invertible if
∏k
j=1{|ϕ0+ψj|Fx(rj)−Fx(rj−1)} <

1 and is not invertible if
∏k
j=1{|ϕ0 + ψj|Fx(rj)−Fx(rj−1)} > 1.

More recently, Chan and Tong (2010) have considered the harder
problem of the invertibility of nonlinear ARMA models. Under very
general conditions, their local analysis shows that there is a generic
dichotomy that the innovation reconstruction errors either diminish
geometrically fast or grow geometrically fast. They derive a simple
sufficient condition for a nonlinear ARMA model to be locally invert-
ible.

Despite their linguistic similarity, the terms ‘invertibility’ and ‘re-
versibility’ refer to two different concepts. Intuitively, a time series is
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time-reversible if running it forward in time has the same probability
distribution as running it backward in time, i.e. the direction of time
is irrelevant. For a stationary univariate time series, reversibility is
universal for the Gaussian case but rare for the non-Gaussian case.
Even a linear AR model driven by non-Gaussian innovation is gen-
erally time irreversible. A striking and classic example is the AR(1)
model: Xt =

1
2Xt−1+εt, t ≥ 0, where {εt} is a sequence of iid random

variables with a two-point distribution residing at 0 or 1 with equal
probability, and X0 ∈ [0, 1]. In reversed time, the model is a noise-
free SETAR model, which generates chaos. (Clearly this model is not
strongly mixing.) This model has attracted the attention of many time
series analysts, including Whittle (1963, p.24), who referred to P.A.P.
Moran, Rosenblatt (1964), who referred to B. Jamison, and Bartlett
(1990), which was his last research paper. For a stationary multivari-
ate time series, reversibility is rare for all cases. (Chan et al., 2006). I
find that a lot can be learnt about a statistical technique for time se-
ries by first running the time series forward in time and then backward
in time. For example, the forward-backward check will show that, for
vector AR modelling, the naive uni-directional Levinson-Durbin al-
gorithm has to be modified. In fact, a pair of algorithms running
simultaneously is needed, one for the ‘forward’ AR model and another
for the ‘backward’ AR model. (Whittle, 1963, p.102). Another exam-
ple is the so-called backforecasting technique due to Box and Jenkins
(1970, Ch. 7). In fact, it is predicated on time-reversibility.

5 Statistical Modelling

5.1 Initial Data Analysis

The emergence of the threshold models and other nonlinear time se-
ries models has led to the development and sometimes the re-discovery
of numerous data analytic techniques. Many of these have found their
way into book forms, e.g. Tong (1990), Tsay (2002), Fan and Yao
(2003), Cryer and Chan (2008). An amusing example of re-discovery
is the plot of Xt against Xs. For an early exponent of correlation anal-
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ysis such as Yule, such plots came very naturally or even routinely. In-
deed, Yule (1927, p. 277)) plotted Xt against Xt−1+Xt+1. The choice
of the latter is, however, intriguing. Could he have some vague inkling
of time irreversibility in view of the asymmetry of the sunspot cycles?
Sadly these plots dropped out of favour with time series practitioners
in the 1960s and 1970s, most probably due to the pre-occupation with
linear Gaussian time series of the period. In contrast, free from attach-
ment to linearity and normality, population ecologists have continued
to plot them, under the name of ‘Moran diagrams’. I remember being
fascinated in 1978 by such a plot as I was watching it evolving on the
monitor of my IBM 386 computer; slow computers can sometimes be
more helpful than fast ones! I joined the scattered points by straight
lines as they were being plotted over time and called the resulting plot
a (discrete-time) phase plot, following the terminology in dynamical
systems.

5.2 Fitting a Threshold Model

A popular approach to fit a threshold model is the conditional least
squares method. The first rigorous study of its properties for a SETAR
model was by Chan (1993). He assumed that the SETAR model is
geometric ergodic and stationary, with strictly positive and uniformly
continuous distribution for the innovations, and both the innovations
and the marginal distribution of the time series have finite second order
moment. Under these assumptions. he proved that all the estimators
(i.e. for the threshold r, the delay d and the ‘slopes’ and ‘intercepts’)
are consistent. He further proved that if finite fourth moments exist,
then (i) the threshold estimator is N−consistent; (ii) the threshold
estimator is asymptotically independent of the slope estimators and
the intercept estimators; and (iii) the slope estimators and the inter-
cept estimators are

√
N−consistent and asymptotically normal. He

also showed that the threshold estimator follows a compound Poisson
process (CCP), due to the fact that the sum of squares of the residu-
als is a discontinuous function of the threshold parameter. He noted
that N−consistency is not unusual by recalling a similar feature in
the estimation of a ‘jump’ in a cumulative distribution function.
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After Chan’s important results, the estimation of the threshold pa-
rameter has continued to attract much attention since it is a key pa-
rameter of the SETAR model. For example, Hansen (1997) looked
at the case in which the threshold effect (the difference in slopes be-
tween the two regimes) becomes small as the sample size increases
and showed then the asymptotic distribution of the threshold esti-
mate is free of nuisance parameters (up to scale). Chan and Tsay
(1998) studied the estimation of the threshold parameter of a continu-
ous SETAR model and showed

√
N− asymptotic normality. Bayesian

estimation has also been studied. See, e.g., Stramer and Lin (2002),
Chen and Lee (2008) and Geweke (2009). For the related STARmodel,
although

√
N− normality is obtained for the estimators of all the pa-

rameters (Chan and Tong, 1986), the imprecision of the estimator of
the ‘smoothness’ parameter σ is problematic unless the sample size is
very large. This has a bearing on the issue of SETAR models versus
STAR models for real data, to which I shall return shortly.

Fitting a time series model to real data is an art as well as a sci-
ence. To assist practitioners to fit a TAR model, numerous statistical
tools are now available and many of these have been described in book
forms. See, e.g., Tong (1990), Tsay (2002), Fan and Yao (2003), Cryer
and Chan (2008) and others. Computer softwares are also available,
some of which come as companions to books. The R codes in Cryer
and Chan (2008) are particularly helpful.

In practical applications, whether a STAR model or a SETAR
model should be used depends on a number of considerations. How-
ever, there is always a place for sensible compromises. Let me elab-
orate. Take the (log transformed) MacKenzie lynx data for example.
Ecological theory will probably support a smooth autoregressive func-
tion. Now, there is evidence to support that a threshold should lie
in the vicinity of 3. However, Figure 4 shows that there are few ob-
servations to provide sufficient information on the precise shape of
the autoregression around 3, which is the anti-mode. In this case, a
SETAR model, of either the continuous or the discontinuous genre,
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is a reasonable and practical compromise/approximation because the
‘true’ smooth autoregessive function simply cannot be estimated with
any precision around the threshold. The best that can be hoped for
is the estimation of the function away from the anti-mode, where lin-
ear dynamics would be quite an adequate approximation. On the
other hand, a STAR model is clearly sensible by reference to ecologi-
cal dynamics but the imprecision of the estimator of the ‘smoothness’
parameter σ must be noted.

There are, of course, situations in which subject matter consider-
ations would dictate an un-smooth or even discontinuous model. For
example, a decision (e.g. an intervention) is often discontinuous, which
may lead to a switch to a different dynamics after say d units of time.
The connection between discontinuous decision processes and TAR
modelling was discussed in a rarely cited note (Tong, 1982).

Although a TARMAX model and a multivariate TAR model have
been studied and fitted to real data, e.g. Tong (1990), the sampling
properties of the estimators have not been studied in depth. More-
over, the estimation of parameters for more than two regimes is not
fully developed.

In real applications of TAR models involving several time series, it
is not often clear as to the best way to define the indicator time series
{Zt}, i.e. the switching mechanism. The principle of parsimony cou-
pled with computational considerations suggests that a vectorial {Zt}
is probably not a practical proposition. A practical approach could
be based on some sort of (non-linear) principal components. See, e.g.,
Wu and Chen (2007) and Xia et al. (2007).

5.3 Testing for Linearity in Threshold Models

In model (3.4), suppose that ϕ = 1. Consider the null hypothesis
H0 : α = γ, β = δ. Under H0, model (3.4) is a linear AR model. Thus,
to test H0, or its obvious extension to higher order cases, is equivalent
to testing for linearity within the SETAR setup. This was a non-
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standard problem because, under H0, the nuisance parameter r is ab-
sent, implying that the conventional χ2 asymptotics for the likelihood
ratio test would not apply. Chan (1990) and Chan and Tong (1990)
laid the theoretical foundations, by recognizing that the problem is
related to the maximum of a stochastic process. These led to usable
percentage points (Chan, 1991) and extensions to threshold cointegra-
tion (Hansen and Seo, 2002), threshold MA models (Ling and Tong,
2005), and others. I should remark that the non-standard problem
has serious implications on model selection. If the selection criterion
is based on the likelihood, such as Akaike’s information criterion or
the Bayesian information criterion, then care should be exercised in
counting the number of independently adjusted parameters. This re-
mark applies to parametric nonlinear time series modelling, neural
networks, and others.

A separate but related area is the goodness-of-fit test. Li’s com-
prehensive monograph (2004) is very valuable. There have been some
recent advances in the use of empirical processes, following the lead by
An and Cheng (1991). For example, adopting a score-based approach,
Ling and Tong (2010) has developed an array of goodness-of-fit tests,
each tailored for a specific model, e.g. an SETAR model. This ap-
proach can, in many cases, lead to greater power than residual based
tests.

5.4 Real Applications

The threshold models have been widely applied. Significant ex-
amples are in ecology (e.g. Stenseth et al., 1999), epidemiology (e.g.
Stenseth et al., 2006; Samia et al., 2007), actuarial science (e.g. Chan
et al., 2004), economics and finance (e.g. Tsay, 2002)), water resources
(e.g. Tong et al., 1985). Many other examples can be found in, e.g.,
Tong (1990) or by a Google search. Let me highlight just one exam-
ple to give some general flavour. In ecology, key questions include (i)
What gives rise to the lynx cycle across the whole of Canada (not
restricted to just the MacKenzie River region)? Is it due to ‘phase-
dependency’ or ‘density-dependency’, in the language of the ecolo-
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gists? (ii) In what way does the lynx dynamics vary with climatic
regions? Stenseth (2009) has given an authoritative summary of the
many collaborative contributions made, over many years, by a team of
ecologists, biologists, statisticians and climatologists gathered around
him.

6 Some Off-springs

In Chan (2009), many of the important off-springs of the TAR model
have been discussed. Some notable ones are threshold unit root (e.g.
Chan et al. (1991), Enders and Granger (1998) and Caner and Hansen
(2001)), threshold co-integration (e.g. Balke and Fomby, 1997), thresh-
old GARCH models (e.g. Glosten et al. (1993), Zakoian (1994), Li
(2009)), double threshold ARMA models (e.g. Li and Li, 1996).

7 Threshold Volatility Models

In the application of SETAR to the MacKenzie lynx data, Tong and
Lim (1980) addressed the issue raised by Moran referred to in section
2 by having different estimates for the innovation variance in different
regimes. However, it is clear that the full potential of the TAR models
for the modelling of the conditional variance has not been exploited.
I shall now report some on-going research conducted by Chan, Ling
and myself. I have referred to the leptokurticity of model (4.5). Now,
consider a multi-regime generalization of the model.

Xt = σ(Xt−1)εt. ( 7.1)

where R =
∪m
i=1Ri, Ris are mutually disjoint subsets of the real line,

σ(x) = σi > 0 for x ∈ Ri, and εt are independent and identically
distributed random variables with zero mean and unit variance, inde-
pendent of past X’s. The above model is called the threshold volatility
model, or TVM for short, by Chan et al. (2010), in which the following
results are established.
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FACT 1: TVM is always strictly stationary and ergodic.

FACT 2: E[Xt|Xt−1] ≡ 0; {Xt} is a martingale difference sequence.

FACT 3: Under general conditions, any continuous instantaneous non-
linear transformation of {Xt} is an ARMA(m− 1,m− 1) process.

Theorem 7.1: Let P = (pij), where pij = Pr(Xt+1 ∈ Rj|Xt ∈ Ri).
Let Yt = h(Xt), where h is a continuous function. Assume that
P is irreducible, {Yt} admits finite second order moments and that
E(h(εt)) ̸= 0. Let γk = γk,Y be the lag-k auto-covariance of {Yt}.
Then, there exist constants ci, i = 1, . . . , cm−1 such that {γk} satisfies
the Yule-Walker equation:

γk = c1γk−1 + . . .+ cm−1γk−m+1, ( 7.2)

for k ≥ m.

The above theorem indicates the possibility of clustering effects.
The order of the ARMA model is potentially useful for the determi-
nation of the number of regimes for the TVM in practical applications.

Note that by replacing the argument Xt−1 of the piecewise constant
function σ(·) in (7.1) by Ut−1, where {Ut} is a hidden time series inde-
pendent of {Xt}, a hidden TVM results. It parallels the well-known
stochastic volatility model.

8 Concluding Remarks

At the dawn of time series modelling, masters like Udny Yule (1927)
were aware that linear models are unrealistic. Whittle (2009) re-
counted that ‘nonlinearity was forced on him observationally when a
seiche study (Whittle, 1954) revealed the existence of subharmonics.’
He took a decisive step and suggested a piecewise linear differential
model in 1954, referring to the master piece by Andronov and Khaikin
(1937) for the necessary theory. In a different context, Tukey (1961)
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proposed the regressogram, which is piecewise constant. Akaike told
me in the 1970s that the ‘secret’ of his success in controlling a com-
plex cement kiln is a piecewise linear filter rather than the multivariate
linear AR models. He alluded to this in his discussion of Tong and
Lim (1980). I have never doubted the inevitability of the threshold
principle in time series analysis just as I have never doubted non-
linearity. The proliferation of the threshold family, over the past 30
years, merely illustrates once again the universal truth that simplicity
is not only beautiful but also productive.

Looking ahead, I can see that the threshold principle will probably
continue to make worthwhile contributions in time series analysis over
the next 30 years. In particular, I am optimistic that it will lead to ad-
vances, for example, in nonstationary-nonlinear time series modelling,
multivariate time series modelling, spatial-temporal series modelling,
panel time series modelling and others.
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