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In standard notation, let A be a non-void event and {H;, Hy,- -+, Hy,} be a set of events
which are (i) non-void, (ii) mutually exclusive (i.e. H; N Hx = 0 and hence P(H; U Hy) =
P(H;) + P(Hy) for j # k), and (iii) collectively exhaustive, P(UZ,H;) = 1. The Bayes
formula is

P(A|H,)P(H,) P(A|H;)P(H;)

P(HA) = = ) ':1,."7m7 1
LA = =50 = Sm PAE)P(H) W
where the last substitution is by virtue of the so-called formula of total probability,
P(A) =) P(A|Hy)P(Hy), (2)
k=1

which is valid due to the assumptions (i) to (iii) of {H1, Ha,- -+, Hp }-

In Bayesian inference, which is the first paradigm of statistical inference in history,
{Hy,Hy,---,H,} are antecedent events viewed as competing hypotheses and P(A|H;) is
the probability that the event A occurs as an outcome of the jth hypothesis. The investiga-
tor assigns P(H;), called the prior probability, to the jth hypothesis based on available
information to him/her or in accordance with his/her belief on the odds of the competing
hypotheses. Given that A occurs, Bayes formula (1) gives the revised probability, called the
posterior probability, of the jth competing hypothesis.

Now consider the question whether we can prescribe the posterior probabilities that we
want and work out the prior probabilities to get them using Bayes formula. The question
amounts to expressing P(H;) in terms of P(H;|A), P(A|H;) (and hence P(A|H;)). If the
inversion from posterior to prior is in the form of a formula, we shall call it an IBF (for
Inverse Bayes Formula), following Ng (1995a, 1995b, 1997a) in the original setting of
probability density function (pdf). In case the inversion is in the form of an algorithm
instead of a single formula, we shall call it IBFA, meaning Inversion of Bayes Formula
Algorithm. For the practical need leading to the question in pdf setting, please see Tanner
and Wong (1987), Tanner (1996), Ng (1997b) and Tan, Tian and Ng (2009, page 2, 9).

If all IBF or IBFA are correctly derived based on the assumption, called compatibility
or consistency, that the given values of P(H;|A) and P(A|H;) are really from an existing
set of joint probabilities, one can construct P(ANH;) and P(ANH;) and then reconstruct all
P(H;|A) and P(A|H;), based on the results from the IBF or IBFA. So checking compatibility
is a minor issue, being equivalent to checking whether or not the reconstructed probabilities
from the IBF or IBFA concur with those we have used as input. With this said once and
for all, the issue of checking compatibility need not be explicitly mentioned in the lemmas
and propositions in this article to avoid repetitiveness. Outside the Bayesian context, it
seems apt to call an IBF a de-conditioning formula (DCF), and an IBFA as DCA, as
it calculates unconditional probabilities from supposed conditional probabilities and checks
compatibility.

We shall need the following facts in this article, which are easy to verify.




Lemma 1 (Equivalent statements for non-void events)

If A and B are non-void events, the following statements are equivalent: P(A|B) = 1,
P(A|B) =0, P(B|A) =0, P(BNA) =0, P(BN A) = P(B), and P(B|A) = P(B)/P(A).

Lemma 2 (Probability ratios)
If all the probabilities involved in each identity are positive, we have

P(A1) _ P(A]Ay)  P(A) _ P(AB) /P(A2]B) _ P(A)B)P(B|A) (3)
P(A2)  P(A3A)" P(Ay)  P(BlA) /[ P(BlA:)  P(A:|B)P(B|A;)
Probability ratios (or the odds in a general sense) are the key quantities in IBF and
IBFA. If the probability ratio for A; over As is formed through B as in the second identity
of Lemma 2, we say that B is a ratio bridge (or simply a bridge if the ratio-context is clear)
of A; and A, , or simply that B bridges A; and A,, or that A; and A, are ratio-bridged
by B. The “bridge” element is actually displayed in the cyclic appearance of Ay, B, B, A,
in the numerator and in reverse order in the denominator of the last ratio of the lemma.
Furthermore, if A, is ratio-bridged to Az by another event C', we can form the probability
ratio between A; and A3 by multiplication or division of the relevant pair of ratios with
the relationship P(A;)/P(A;3) = (P(A1)/P(A2))(P(Az)/P(A3)), and we shall say in this
case that A; and Aj are ratio-connected. A set of events is said to be ratio-connected, or
connected in abbreviation, if every pair is either ratio-bridged or ratio-connected.

Proposition 1 (Inversion of Bayes Formula for Dichotomous Outcomes)
Let A be non-void and {Hi, Ha, - - -, H,,} satisfy the conditions (i) to (iii).

(a) If P(A|H;) and P(A|H;) be both positive for some 7, then the following are true:

P(A|H;)P(H,;|A)\ ™ o P(A|H,)P(H;| D)™
P(A’z{”mﬂjlmpmmj)} ’ P(A)‘{l P(Hle)P(fl\Hj)} @

P(Hy) = P(Hy|A)P(A), k=1,---,m. (5)

If P(A|H;) and P(A|H;) are positive for more than one j, the above results are identical
for all such j.

(b) Consider the case where, for any j = 1,---,m, either P(A|H;) or P(A|H;) is zero. If
P(A|Hj) = 0 for all j, then A is the sure event, P(A) = 1. If P(H;|A) > 0 for only a
number of H; while (H;|A) > 0 for the remaining H;, then there is no unique solution

for P(A), P(A) and P(H;).

Proof: Noting A and A are ratio-bridged by H; and that P(4) =1 — P(A), we can solve
for P(A), getting (4) and hence (5). Since the derivation for (4) and (5) is the same for
any other j, hence the results should be the same regardless the choice among such j. The
first part of (b) is trivial. For the second part we may assume, without loss of generality,
only the first k of the P(H;|A) are positive and only the last (m — k) of the P(H,|A) are
positive, as shown in the table below, where the 0 and 1 in the cells are based on Lemma 1
and hence the values for the two sets of conditional pro]_aabilities are subject to Zé?:l a; =1
( conditional on A) and 72, ,, b; = 1 (conditional on A):



P(H;|A:)
P(A|Hj) ool He Hipr || Hmo | P(A)
_ ax ag oy 0
A=A 1 1 0 0 q
s 0 0 br+1 bm
A2 _A 0 [ O 1 “ e 1 l_q
P(Hj) T Tk Te+1 Tm 1

The following m equations have m unknowns, q and ;, as 3272, m; = 1,
ﬂ—j:qa’jaj:lu'”)k; W]:(l—Q)bjaj:k—'—l’am

Note that the sum of the m equations gives 1 on both sides, hence the number of effective
equations is less than the number of unknowns and therefore the solution is not unique.

Now let us consider the general case when each hypothesis can lead to n outcome events,
Ay, Ay, - -, A, which satisfy the same assumptions (i) to (iii) for Hj. The values of the two
sets of n X m conditional probabilities are to be arranged in the following table where in
each cell L;; represents the likelihood P(A;|H;), P;; the posterior probability P(H;|A;), m;
the prior probability P(H;) and ¢; = P(A;):

P(Ai|H,) TEAE Hy || Hy || Ha |P(4)
T J
Pll P12 Pl' Pl
A ... il .. m
' Ly Ly Ly Lim n
P Pi P Fim
As Lin Li B L;; o Lim %
Pnl PnZ Pnj an
An L'n,l Ln2 . Lnj o an n
P(HJ) T 9 Uy Tm, 1

Since L;; and P;; in each cell are simultaneously zero or non-zero according to Lemma 1,
we can form the ratio r;; = P,;/L;; in each positive cell, getting the system of equations,

Ti/q =Ti; = Py/Lij, i=1,2,---,n; j=1,---,m. (6)

So there are m+n—2 effective unknowns, namely ¢; and 7; subject to constraints 3202, 7; = 1
and Y7 ; ¢; = 1, in as many number of equations as the number of positive r;;.

When all cells are positive, i.e. all 7;; are defined, it is called the positivity condition
whose counter part in pdf setting for continuous random variables is widely assumed. The
next proposition is for this simplest case.

Proposition 2 (IBF under positivity condition in the whole table)
Under the positivity condition, the following IBF are valid:

m=1/>rZ =1 m; =1/ ry, i=1,---,n. (7)
=1 j=1
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Proof: For each i, sum all the m equations in (6) to get 1/¢; = >j.; i, hence the sec-
ond equation of (7). Flipping the ratio in (6) to get ¢;/m; = r;;' and then sum them over
i=1,---,n to get the first equation of (7).

Although positivity condition is widely assumed for continuous pdf in applications, it
is frequently not realistic for events. The ideas in this article for dealing with situations
without positivity condition, including ratio-bridging and ratio-connecting, have been pre-
sented in the 1996 Sydney International Statistical Congress by Ng (1996). We first note
some obvious properties concerning the combined two-way table of probabilities, which to-
gether with Lemma 2, shall form the key to IBF and IBFA in sparse structure of positive cells.

Lemma 3 (Properties for the two-way table of events)
With respect to the n x m table for events A; and Hj;, the following are true.

(a) Without loss of generality, rows and columns can be permuted any number of times.

(b) Without loss of generality, any row or any column whose cells are all zeros can be

discarded.
(c) Given the values of (71 /T, T2/, * s Tm—1/Tm), the set of (m — 1) ratios relative to
Tm, We have a complete solution for all ;:
m—1 -1
7Tm={1+zﬁ} , szlri—ﬂ'm,j:lﬂ,---,m—l. (8)
=1 Tm T

The solution is similar if any one of m; is used as the common denominator, pro-
viding another set of n — 1 ratios. Furthermore, if the complete consecutive ratios
(m1 /7, T/ 3, -+, Tn—1/Tp) are given, we can get the ratios against a common denom-
inator by chained multiplications,

m—1

-1

m—1

_711-2 T 7T2 i
Tm ng Tjt1 ]1;1

9)

j+1 Tm j 1 7Tz+l

Finally, all of the above is analogous for ¢;,2 =1,---,n.

Note that part (c) says that the key to IBF, or de-conditioning, is whether or not the
whole set of H;, or of A;, are ratio-connected as defined immediately after Lemma 2, and
if yes, it actually provides specific ways of calculating the unconditional probabilities. The
following is a special case where the whole set of H; are ratio-bridged by one event A, or
vice versa.

Proposition 3 (IBFA under positivity in one row or column)

(a) If the ith row is positive, the inversion of Bayes formula is as follows:

-1
My = {1+lemj} ,szwmrij,jzl,---,m—l. (10)

¢ = Y mLy, i=1--,n (11)



In case of more than one row with positive cells, the above solution is the same regard-
less the choice among such rows.

(b) If the jth column is positive, the solution of inverting Bayes formula is as follows:

n—1 -1
Tni .
G = {1+rm2r;f} ,qi_—:an—{,zzl,.--,n—l. (12)
i=1 ]
mo= > aPy, j=1-,m (13)
=1

In case of more than one column with positive cells, the above solution does not depend
on the choice among such columuns. :

Proof: For (a), note that every H; is ratio-bridged to H,, by the same A;, and hence ac-
cording to the second equality of (3), 7;/mm = 74 /Tim (j = 1,---,m — 1). By means of (8),
we have (10) and hence (11), where the reasoning is the same for any positive row. Part (b)
is done in a similar way for a positive column.

Example 1 (IBFA for zigzag paths of positive cells)

The H; can be ratio-connected through a number of A; if there is a zigzag path of positive
ri; from the first column to the last after permutations of rows and columns. In this case,
the consecutive ratios for 7; are readily available for use in (9) of Lemma 3. The same can be
said about a path from the first row to the last, or about one corner to the opposite diagonal
corner. The following are two examples for illustration, where all well-defined 7;; = P,;/L;;
are shown, while an empty cell means that the ratio is not defined for a pair of zeros:

™ T T3 T4 s Te ™ 2 3 T4 s e
q1 T16 Q1 ™11
ga T25 G2 | T2 T22
g3 | T31 | T32 | T33 ds T32 | Ts3
qa T 43 T45 qs Taz | T4a
ds 53 | Ts4 | Ts5 | 756 gs Ts4 | Ts5
96 T62 de Tea | Tes | Te6
ar | ™ q7 76

On the left table, A3 bridges the first 3 of H; with consecutive ratios, m1/my = r31/r32 and
Ty/T3 = T32/T33, and As bridges the last 4 of H; with consecutive ratios, ms/ms = 753/754,
T4/Ts = rs54/755 and m5/me = T55/T56. So we can plug in (9) and then (8) to get all 7.
For easier discussion in the sequel, it would be convenient to express the ratio-connection
process in symbols as follows: [1 : 1,2,3] stands for “row 3 bridging the first 3 columns”




and [5 : 3,4, 5, 6] stands for “row 5 bridging the last 4”7, which together lead to the complete
ratio-connection {1,2,3,4,5,6}, since the two ratio-bridged sets have a common member, 3.

On the right table, the connecting process for H; is: [2:1,2], [3:2,3], [4:3,4], [6:4,5],
[6 : 4,5,6], cumulatively leading to {1,2,3,4,5,6}; note that [5 : 4,5] is ignorable due to
[6:4,5,6]). For A;,itis: [1:1,2],[2:2,3],[3:3,4],[4:4,5,6], [5:5,6] (ignorable), [6 : 6,7],
cumulatively leading to {1,2,3,4,5,6,7}.

We summarize the procedure as demonstrated in the above example as

Proposition 4 (IBFA for connecting zigzag paths of positive cells)

If, by permutations of rows and columns in the n x m table, there is a zigzag path of positive
cells connecting all columns, then an IBFA for use in Lemma 3(c) is to find the consecutive ra-
tios, 7 /mjr1 = Tij/Tij+1, J = 1,---,m, by going through the horizontal segments, numbered
by i along the path. If the path connects all rows, it is to get ¢;/giv1 = Tiv1,5/Tij; ¢ =1, -, n,
in a similar manner along the vertical segments. If the path connects opposite diagonal
corners, an IBFA is to get both m;/7;11 and ¢;/¢;+1 along the path respectively from the
horizontal and vertical segments.

Example 2 (IBFA for scattered positive cells)

If it is not handy to get a table with a zigzag path of positive cells by permutations of rows
and columns, we can follow the above process of ratio-connection by means of examining
row by row, or column by column. The following work-sheet demonstrates handling a table
with a non-zigzag pattern which is amenable for de-conditioning as shown:

7y | wo | w3 | w4 | w5 | e | j bridged Connected Ratios

Q1 T14 716 | [4, 6] {4,6} /T4 = T16/T14

1)) T22 | T23 T25 2,3,5]  {2,3,5;4,6}  ma/ms = ran/Tas, M3/Ts = T23/T0s
43 7’36

Qs |Ta1 T45 1, 5] {2,3,5,1;4,6} m1/7m5 = ra1/745

qs T53 {2,3,5,1;4,6}

6 T62 765 [2,5] available on 2nd row

qr | rn T74 [1,4] {2,3,5,1,4,6} m4/m1 = ra/rn1

Column j: 5 3 1 4 6

1 bridged: 2,4, 6] [2,5] [4,7] 1,7 [1,3]
Connected:  {2,4,6} (2,4,6,5)  {2,4,6,5,7} {2,4,6,5,7,1} {2,4,6,5,7,1,3}

Ratios: Q4/Q2 = 7“25/7“45 QS/Qz = 7"23/7"53 Q7/Q4 = 7”41/7’71 Q1/Q7 = ?”74/7”14 C]3/Q1 = 7"16/7”36
QG/QQ = 7“25/?"65

The first column on the right side of the table shows subscripts of bridged H; by A;,
where As and As do not bridge at all. We use short-hand [4,6] for [1 : 4,6] and (2,3, 5]
for [2 : 2,3,5], etc., since the row no. is clear in a work-sheet like this one, and similarly
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for the “i bridged” row below the table. Note that a semi-colon separates ratio-connected
cluster of events. In row by row process, the two connected clusters, {2,3,5,1} and {4,6}
are connected by the last row where each member of the pair [1,4] intersects one cluster only.
For columns, we start with column 5 (bridging more) and ignore column 2 (its bridged set
being a subset). The connection is completed through columns in the order j = 5,3, 1, 4,6.

Now the ratios in (8) of Lemma(c) are calculated against the most bridged j, here j = 5.
As shown in the last column of work-sheet, bridging gives 7g /74 via i = 1, my /75 and 73 /75 via
i =2, m/m5 via i =4, my/m; viai = 7. Connecting i = 7,4, we get (74/m1)(m1/75) = 74/ 75;
connecting 1 = 1,7, 4, we get (mg/m4)(ma/71)(m1/75) = 7/ m5. All 5 ratios to 5 are ready.

In the work-sheet, the second row below the table shows g, being the best common
denominator for ¢;. As shown on the last row of work-sheet, bridging gives q4/ga = 725/745
and ¢s/q2 = To5/Tes Via § = 5; q5/q2 = To3/Ts3 Via § = 3; q7/qs = ra1/rr via j = 1,
q1/qr = r74/7r1a via § = 4; g3/q1 = 7T16/736 via j = 6. Connecting by j = 1,5, we get
(¢7/94)(9s/02) = a7/ q2; by 5 = 4,1,5, we get (¢1/97)(g7/24)(94/92) = 01/ ¢2; connecting j = 6
to that of ¢ = 4, 1,5, we get (g3/q1)(q1/q2) = ¢3/q2. So all 6 ratios to gz are available. ‘
- Now suppose that all cells in the last row are zero, i.e. r7; and ryy are not defined. So
we are dealing with a 6 x 6 table. The procedure by rows stops at the 6th row and there is
no ratio-connecting between {2,3,5,1} and {4,6}. Although the ratios within clusters are
determined as before, there are infinitely many possible proportions, a : (1 —a),0 < a < 1,
to be allocated to the two clusters, each being as good as another in reproducing the sup-
posedly compatible P;; and L;; which define r;;. Similarly for the procedure by columns, the
two clusters, {2,4,6,5} and {1, 3}, are not connected and there are infinitely many solutions.

The IBFA being illustrated by Example 2 is summarized in the following proposition.

Proposition 5 (IBFA for sparse patterns of positive cells)
In case it is not handy to obtain a zigzag path as assumed in the above proposition, the
IBFA consists of the following steps for columns:

(1) For efficiency purpose, permute the rows and columns so that the beginning rows and
columns have more positive cells. Then set up a work-sheet as shown in Example 2.

(2) In each row, write all the subscripts of ratio-bridged H; in a square bracket.

(3) Any two ratio-bridged sets of subscripts in different rows are ratio-connected if there
is one subscript in common. The bridged set of subscripts on each row is either ratio-
connected to some cumulatively connected cluster, or form a new connected cluster by
itself. The connected clusters, separated by semi-colons, are put in a curly bracket for
each row.

(4) The step (3) is continued until all m subscripts of H; are ratio-connected; in this case
the rows which are not needed in making the complete connection will be ignored in
the steps that follow. If all rows are exhausted but there is still no complete connection
of all m subscripts, there are more than one IBF solution.

(5) Choose a subscript, say k, that is directly ratio-bridged to other subscripts as many as
possible among all rows.

(6) For each bridged set that contains k, get the ratios m;/m, = r;;/rix where ¢ is the row
number of the bridged set and j is any other subscript in the same bridged set with k.



(7) For subscripts of H; which are not bridged to k, but connected to k through other
subscripts, the ratios m; /7, for these subscripts are obtained by chained multiplications
(or divisions) of ratios involving those other subscripts, with iterated substitutions of
previously available ratios if so needed.

The corresponding IBFA based on rows is similar, with ¢;/qx = rx; /74, for step (6), where gy
is the common denominator and column j bridges row ¢ and row k.

The Bayes formula was developed in a manuscript by Reverend Thomas Bayes and,
after his death in 1761, was submitted by his friend to the Royal Society for posthumous
publication in 1763. It is still a puzzle as why Bayes, who “was for twenty years a Fellow of the
Royal Society” (Fisher 1973, p.8), did not submit his fine essay. Fisher (1973, p.9) wrote: “it
seems clear that Bayes had recognized that the postulate proposed in his argument (though
not used in his central theorem) would be thought disputable by a critical reader, and there
can be little doubt that this was the reason why his treatise was not offered for publication
in his own lifetime.” Stigler (1983) provided another conjecture. It is a conjecture of the
author of this article that, after finishing the manuscript, Bayes recognized the inversion of
his formula. His prior probabilities, therefore, could be perceived as the results of reverse-
engineering. So he had to think about the implications of the argument and needed more
time to re-write his essay (hand-written with feather and ink at that time).
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