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Abstract

We review the concepts of local and global invertibility for a nonlin-

ear auto-regressive moving-average (NLARMA) model. Under very general

conditions, a local invertibility analysis of a NLARMA model admits the

generic dichotomy that the innovation reconstruction errors either diminish

geometrically fast or grow geometrically fast. We derive a simple sufficient

condition for a NLARMA model to be locally invertible. The invertibil-

ity of the polynomial MA models is revisited. Moreover, we show that the

Threshold MA models may be globally invertible even though some com-

ponent MA models are non-invertible. One novelty of our approach is its

cross-fertilization with dynamical systems.

Keywords: Attractor, Dynamical system, Nonlinear time series, Polynomial MA

model, Subadditive ergodic theory, Threshold MA model.
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1 Introduction

Despite the growing literature on nonlinear time series analysis (Priestley, 1988,

Tong, 1990, Franses and van Dijk, 2000, Chan and Tong, 2001, Fan and Yao,

2003, Small, 2005, and Gao, 2007), the general framework makes use of nonlinear

autoregressive models. In contrast, nonlinear moving-average (NLMA) models are

relatively under-explored. Part of the problem contributing to the slow develop-

ment, both empirical and theoretical, on NLMA models is due to the difficulty in

establishing the invertibility of a NLMA model.

Here, we focus on nonlinear autoregressive moving-average (NLARMA) mod-

els, and discuss two concepts of invertibility for these models. We illustrate these

concepts with the polynomial MA models and the threshold MA models.

2 Nonlinear Auto-Regressive Moving-average Mod-

els

The linear moving-average (MA) model of order q is characterized by the feature

that it has memory of q lags. Recall that an MA(q) process {Yt} is defined by the

equation:

Yt = µ + εt −
q∑

i=1

θiεt−i,

where µ is the mean of Yt and the innovations {εt} are white noise, i.e. uncorrelated

random variables of zero mean and finite (identical) variance σ2. For simplicity, we

shall assume µ = 0. It is well known that the autocorrelation function (ACF) of an

MA(q) process has a cut-off after lag q, i.e. corr(Yt, Yt−`) = 0 for ` > q. In other

words, the process is uncorrelated with its q+1-th or higher lags. If the innovations

are, furthermore, jointly independent, then the process is independent of its q + 1-

th or higher lags, in which case the process is said to have finite memory. The

natural question of developing nonlinear models with finite memory has received

some attention in the literature.

Here, we review some nonlinear time-series models of finite memory. Hence-

forth, we shall assume that {εt} is an independent and identically distributed

sequence of random variables with zero mean and finite variance. To begin with,
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we note that any model of the following form is of finite memory:

Yt = εt + h(εt−1, · · · , εt−q; θ), (1)

where h(·; θ) is a known function for known parameter θ. The linear MA(q) model

is obtained by setting h to be a linear function. Similarly, a nonlinear finite-

memory model, also known as a nonlinear moving-average (NLMA) model, can

be obtained by setting h to be some parametric nonlinear functions. Clearly, any

nonlinear moving-average model is stationary. However, as in the case of linear

moving-average models, the issue of invertibility is pivotal. Invertibility refers to

the feasibility of reconstructing the innovations from the observations, assuming

that the true model is known. Given the parameter θ, Eqn. (1) can be inverted to

define the residuals

ε̂t = Yt − h(ε̂t−1, · · · , ε̂t−q; θ), (2)

where the initial values are generally set as ε̂1−k = 0, the mean of the innova-

tions, for k = 1, · · · , q. The polynomial moving-average model (Robinson, 1977)

is obtained by letting h be a polynomial. For example,

Yt = εt + βε2
t−1

is a simple quadratic MA(1) model. However, it has been noted that polynomial

MA models are generally non-invertible (e.g. Granger and Andersen, 1978b), which

makes them not suitable for prediction purpose, and also makes it hard to carry

out model diagnostics. We shall elaborate on the concept of invertibility in the

following sections.

Several interesting mixed nonlinear ARMA (in short NLARMA) models that

may be invertible have been proposed in the literature. An NLARMA(p, q) model

is defined by a stochastic difference equation of the following form:

Yt = εt + h(Yt−1, . . . , Yt−p, εt−1, · · · , εt−q; θ), (3)

A sub-class of the NLARMA models belongs to the family of bilinear models

(Granger and Andersen, 1978a, Subba Rao, 1981, Guegan and Pham Dinh, 1987

Priestley, 1988, Tong, 1990); they are linear in both past lags of the process and

past lags of the innovation, e.g.

Yt = εt + θYt−1εt−1
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is a simple bilinear model where θ is a parameter. Some results on the invertibility

of sub-classes of bilinear models have been derived and surveyed in the aforemen-

tioned works.

Recently, Ling and Tong (2005) re-visited the Threshold MA (TMA) model,

which specifies that the process switches from one linear MA model to another

linear MA model whenever some lag of the process exceeds one of the threshold

values. A simple TMA model of order one and with one threshold takes the

following form:

Yt =





εt − θ1,1εt−1 if Yt−d ≤ r

εt − θ2,1εt−1 otherwise,
(4)

where the θ’s and r are parameters; d is a positive integer parameter known as

the delay parameter. A more general TMA model will be considered later. It

is straightforward to generalize the TMA model to Threshold ARMA (TARMA)

model by replacing the linear MA sub-models to linear ARMA sub-models. Ling

and Tong (2005) gave some sufficient conditions for the invertibility of a TMA

model of order one and with multiple thresholds. For example, they considered

the following model:

Yt = {φ0 +
k∑

j=1

ψjI(rj−1 < Yt−1 ≤ rj)}εt−1 + εt, (5)

where I(A) is the indicator function of the event A, and −∞ = r0 < r1 < · · · <

rk = ∞ are the k thresholds. Let Fy(·) denote the cumulative distribution function

of Y . They established the following theorem, which gives an almost necessary and

sufficient condition:

THEOREM 1. {Yt} is invertible if
∏k

j=1{|φ0 + ψj|Fy(rj)−Fy(rj−1)} < 1 and is not

invertible if
∏k

j=1{|φ0 + ψj|Fy(rj)−Fy(rj−1)} > 1.

Note that the case with
∏k

j=1{|φ0+ψj|Fy(rj)−Fy(rj−1)} = 1 is undecided but they

conjectured non-invertibility. Note also that the MA coefficients of intermediate

linear MA sub-models also feature in the invertibility condition. However, for

TMA models of higher order, they were only able to give some rather restrictive

sufficient conditions.
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3 Global and Local Invertibility

In this section, we elaborate on the concept of invertibility for NLARMA models.

For conciseness, we focus on the case of an NLMA model defined by (1) for which

the innovations may be estimated by the residuals defined by (2), but note that

all results in this section and the next can be extended to the case of NLARMA

models. On the other hand, the innovations satisfy a similar difference equation:

εt = Yt − h(εt−1, · · · , εt−q; θ),

so that the reconstruction errors Wt = ε̂t − εt satisfy the equation

Wt = h(εt−1, · · · , εt−q; θ)− h(Wt−1 + εt−1, · · · ,Wt−q + εt−q; θ), (6)

which is generally a random-coefficient stochastic difference equation for {Wt}.
Invertibility requires that the reconstruction errors {Wt} approach zero in some

sense, e.g., in probability. Conditions for invertibility are then simply conditions for

the solutions of the difference equation (6) to approach 0 as t →∞, in probability.

For linear MA models, the necessary and sufficient condition for invertibility is

well known. Let

Yt = εt − θ1εt−1 − · · · − θqεt−q.

Then

Wt − θ1Wt−1 − · · · − θqWt−q = 0,

in which case the condition of invertibility is that all roots of the characteristic

equation

1− θ1x− · · · − θqx
q = 0

lie outside the unit circle; see, e.g., Box, Jenkins and Reinsel (1994) and Cryer and

Chan (2008).

However, for the NLMA models, general conditions for invertibility seem diffi-

cult to obtain, as it is generally difficult to derive necessary and sufficient conditions

for zero to be a global attractor for all solutions of (6). Before proceeding further,

we note that we can vectorize (6) into a first-order vector equation for the case

that q > 1. Let Wt = (Wt,Wt−1, · · · , Wt−q+1)
T , and εt = (εt, εt−1, · · · , εt−q+1)

T .
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Then

Wt = F (Wt−1; εt−1, θ)

= (h(εt−1, · · · , εt−q; θ)− h(Wt−1 + εt−1, · · · ,Wt−q + εt−q; θ),Wt−1, · · · ,Wt−q+1)
T .

(7)

(For an NLARMA model defined by (3), F is a function of (Wt−1; Yt−1, . . . , Yt−p, εt−1, θ).)

Clearly 0 = F (0; ε, θ) for all ε so that the origin is an equilibrium point (for the

dynamical model defined by (7)). Then, invertibility is equivalent to the origin

0 ∈ Rq being an asymptotically global attractor, in probability. It is often hard

to study the global nature of the origin. Hence, a weaker form of invertibility has

been studied in the literature (e.g. Granger and Anderson, 1978b) which requires

the origin to be locally and asymptotically stable. In other words, local invert-

ibility concerns whether the innovations can be asymptotically recovered if the

initial conditions are approximately correct. Local invertibility can be assessed by

linearizing F around the origin. Let Ḟ = ∂F
∂W

evaluated at W = 0 and εt−1 be

concisely denoted as Ft. Then, the local asymptotic stability of the origin can be

inferred from the stability of the origin for the random-coefficient linear stochastic

difference equation (c.f. Grobman and Hartman Theorem on p. 237 of Chan and

Tong, 2001):

Wt = FtWt−1. (8)

We now illustrate these concepts with the simple quadratic MA(1) model:

Yt = εt − βε2
t−1,

where β 6= 0. It is straightforward to show that the reconstruction errors Wt satisfy

the stochastic equation:

Wt = Wt−1(βWt−1 + 2βεt−1). (9)

It can be shown that Wt diverges to infinity with positive probability if |W0| > w0

where w0 = 2/|β| with positive probability. Subject to the latter condition, the

claim of transience of {Wt} can be justified as follows. Let γ = E|εt|. Markov

inequality implies that the event |Wt| ≥ 2tw0 for all t occurs with probability

not smaller than Prob(|W0| > w0) ×
∏∞

t=1(1 − 2γ|β|
|β|2tw0−2

), which is positive. The
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preceding argument can be adapted to show that polynomial MA models of degree

greater than 1 are non-invertible under similar conditions, along similar lines as

employed in Chan and Tong (1994, Theorem 2) for the transience of polynomial

AR models. It should be noted that Granger and Anderson (1978b) claimed that

‘a set of models which is not invertible for any non-zero values of its parameters

consists of non-linear moving averages’. However, we are unaware of any rigorous

proof of the claim to-date. Later, we shall state, in Theorem 2, precise conditions

under which a NLMA model is locally invertible/non-invertible with rigorous proof.

For now, the preceding analysis reveals that the non-invertibility of the polynomial

MA model is associated with an unbounded support for the initial reconstruction

error. Below, we conduct a local analysis that shows that the polynomial MA

model may be invertible for the case of innovations with sufficiently small support

around the origin.

Next, we illustrate the concept of local invertibility with the preceding simple

quadratic MA(1) model. Linearizing (9) around Wt = 0 yields the following linear

model:

Wt = 2βεt−1Wt−1,

where the coefficient is random and equals 2βεt−1. The solution of the equation is

trivial, it being

Wt = W0(2β)t

t∏
s=1

εs−1.

In particular

|Wt| = |W0| exp(n
n∑

s=1

{ln |(2β|+ ln |εs−1|}/n).

Hence if ln |2β|+E ln |ε| < 0, then the law of large numbers implies that the origin is

asymptotically stable so that the model is locally invertible. If ln |2β|+E ln |ε| > 0,

then the origin is locally unstable so that the model is not locally invertible. The

case ln |2β|+ E ln |ε| = 0 is delicate and requires further analysis that will not be

pursued here. This example shows that the conclusions concerning invertibility

from a local analysis and a global analysis can differ. Furthermore, the global non-

invertibility is predicated on the condition that the initial reconstruction errors

can be arbitrarily large, with positive probability. On the other hand, the local
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analysis suggests that if the errors are of sufficiently small bounded support, then

the model can be invertible if the initial conditions respect the bounded support

condition for the innovations.

4 Dichotomy of Local Invertibility Analysis

Recall that a linear MA(q) model is invertible if and only if (or iff for short) all

the roots of the characteristic equation lie outside the unit circle. This result

follows from a stability analysis of the difference equation for the reconstruction

errors which satisfy the equation (with F being a companion matrix whose first

row equals (θ1, θ2, · · · , θq)):

Wt = FWt−1

= F tW0,

and the fact that the asymptotic behavior of F t depends solely on the largest

eigenvalue of F in magnitude which is smaller than 1 iff the root condition alluded

to above holds. Indeed, let λ1 be the largest eigenvalue of F in magnitude. It is

well known that λ1 is less than 1 in magnitude iff all roots of the characteristic

equation are outside the unit circle, in which case, for almost all initial W0 with

respect to the Lebesgue measure, |Wt| ∼ λt
1, meaning that the ratio of the two

terms is bounded, and hence the reconstruction errors vanish geometrically fast.

(Here |Wt| denotes the Euclidean norm of the vector Wt.) On the other hand,

λ1 is larger than 1 in magnitude iff some root of the characteristic equation is

inside the unit circle, in which case the reconstruction errors grow exponentially in

magnitude, and hence the model is non-invertible. If |λ| = 1, then the model is still

non-invertible since the reconstruction errors preserve their magnitude. However,

the last case happens with zero Lebesgue measure. Thus, the generic situation is

the dichotomy that the reconstruction errors of a linear MA model either vanish

geometrically fast or they grow exponentially fast.

It turns out that this dichotomy holds for a local invertibility analysis for any

nonlinear MA model. To see this, note that (8) entails that

Wt = (
t∏

s=1

Fs)W0. (10)
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Recall that Fs = Ḟ (0, εs; θ) is a function of εs = (εs, · · · , εs−q+1)
T . Under very

general conditions, a product of random matrices of the above form asymptoti-

cally behaves like the power of some constant matrix. Specifically, Theorem C of

Cohen (1988) states that if E(max(0, log ‖F1‖) < ∞, then

lim
t↑∞

t−1 log ‖
t∏

s=1

Fs‖ = ξ

with probability 1, where ‖ · ‖ denotes a matrix norm for which ‖AB‖ ≤ ‖A‖‖B‖
for any matrices A and B, and −∞ ≤ ξ < ∞ is a constant; furthermore,

ξ = lim t−1E(log ‖∏t
s=1 Fs‖). The preceding result of Cohen follows from the

general subadditive ergodic theory of Kingman (1973). The determination of ξ

is, however, a generally hard problem, except that for the scaler case, i.e. q = 1,

ξ = E(log ‖F1‖), by the independence of the Fs’s. Otherwise, only in rare cases

does ξ admit a closed-form expression. Finally, we note that the preceding result

on the asymptotic behavior of the product of the random matrices holds if Fs

is a function of a stationary ergodic process; such an extension is useful for the

invertibility analysis of a NLARMA model.

In particular, if we take ‖ ·‖ to be the spectral norm (the maximum eigenvalue

in magnitude), the preceding result implies that there exists a constant ξ such

that the local reconstruction errors |Wt| ∼ (exp ξ)t, as t →∞ for almost all initial

reconstruction error (w.r.t. the Lebesgue measure). Hence, the model is locally

invertible iff ξ < 0. Therefore, the necessary and sufficient conditions for local

invertibility of a nonlinear MA model hinge on deriving conditions for ξ to be less

than 0. As mentioned earlier, the determination of ξ is generally a hard problem.

Nevertheless, simple sufficient conditions for ξ < 0 can be obtained by noting that

for any fixed positive integer m,

lim t−1E(log ‖
t∏

s=1

Fs‖) ≤ m−1E(log(‖F1F2 · · ·Fm‖).

To see this, let t = mk + r where k and r are integers and 0 ≤ r < m. Recall the

matrix norm has the property that ‖AB‖ ≤ ‖A‖‖B‖ for any matrices A and B.

It follows from this property and stationarity that

t−1E(log ‖
t∏

s=1

Fs‖) ≤ t−1kE(log(‖F1F2 · · ·Fm‖) + t−1Er(log ‖F1‖)
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from which the claimed result can be obtained by passing to the limit. In particular,

we obtain the following result.

THEOREM 2. The nonlinear MA(q) model defined by (1) is locally invertible if

E(log ‖F1‖) < 0 where ‖ · ‖ is a matrix norm, e.g. the spectral norm. For the case

q = 1, the model is locally non-invertible if E(log ‖F1‖) > 0

The non-invertibility result for q = 1 stated above follows trivially from the

fact that ξ = E(log ‖F1‖), in the scaler case. So far, we assume that the underlying

process is an NLMA process, but the preceding theorem can be extended readily to

the case of a stationary NLARMA model defined by (3), for which Fs is a function

of Ys−1, . . . , Ys−p, εs−1 and θ. Furthermore, if h in (3) is conditionally linear in

the innovations given the Y ’s, then the local invertibility analysis is equivalent to

global invertibility analysis.

5 Threshold MA Model Revisited

Ling and Tong (2005) studied the Threshold MA (TMA) model, which is a piece-

wise linear MA model. For simplicity, consider the simple case of the two regimes:

Yt = εt − I(Yt−d ≤ r)

q∑
j=1

θ1,jεt−j − I(Yt−d > r)

q∑
j=1

θ2,jεt−j (11)

where the θ’s are parameters and r the unknown threshold parameter and d is

a positive integer known as the delay parameter. Intuitively, the transition of

a TMA process switches between two MA processes where the MA process in-

dexed by the parameter vector (θ1,1, . . . , θ1,q)
T is in operation if the process at

lag d is below the threshold r, otherwise the MA process indexed by the parame-

ter vector (θ2,1, . . . , θ2,q)
T is operational. For the TMA model, the reconstruction

errors satisfy (8) with Ft being a companion matrix with its first row equal to

(θ1,1, . . . , θ1,q)I(Yt−d ≤ r) + (θ2,1, . . . , θ2,q)I(Yt−d > r). The remark below Theo-

rem 2 then implies that the TMA model is invertible if the spectral norms of the

two sub-MA processes are less than 1. That is, a TMA model is invertible if all

the roots of the two characteristic equations

1−
q∑

j=1

θi,jx
j = 0, i = 1, 2
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lie outside the unit circle. Much stronger results on the invertibility can be drawn

for the first-order TMA models from Theorem 2. For the first order TMA model

satisfying (5), it can be checked that exp(ξ) =
∏k

j=1{|φ0 + ψj|Fy(rj)−Fy(rj−1)}, so

that Theorem 1 follows from Theorem 2.

However, a TMA process may be globally invertible even if one of its MA sub-

processes is non-invertible. Indeed, this can be seen by the following argument.

Suppose the MA sub-process in the lower regime (Yt−d ≤ r) is invertible with

spectral norm s1 < 1, but the MA process in the upper regime is non-invertible

with spectral norm s2 > 1. Consider a net of TMA models with its two MA

sub-model parameters constant but with variable threshold indexed by r ∈ R.

As r → ∞, the stationary probability of the upper regime, say pr, approaches 0.

However, E(log ‖F1‖) = (1 − pr) log(s1) + pr log(s2) → log(s1) < 0, as r → ∞.

Hence, for all such TMA models with sufficiently large threshold, they must be

invertible. The argument can be generalized to TMA models with more than two

regimes. Thus, the TMA model may be globally invertible even though it is locally

non-invertible over some regimes! To delineate completely regions of invertibility

in the parameter space requires a necessary and sufficient condition. The problem

is largely solved for the TMA model of order 1 but it remains open for the higher

order cases.

6 Conclusion and Acknowledgements

In this note, we illustrate the use of the subadditive ergodic theory for investigat-

ing the local invertibility of a NLARMA model, after linking the problem with

the stability of an attractor in a dynamical system. This approach yields simple

sufficient conditions for invertibility for the Threshold MA models. We conjecture

that more sophisticated analysis via this approach may yield weaker conditions for

invertibility. Moreover, it is of interest to develop empirical approaches to assess

invertibility.
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