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Abstract
Much recent research effort has been devoted to explain the success of deep learning. Random
Matrix Theory (RMT) provides an emerging way to this end by analyzing the spectra of large
random matrices involved in a trained deep neural network (DNN) such as weight matrices or
Hessian matrices in the stochastic gradient descent algorithm. To better understand spectra of
weight matrices, we conduct extensive experiments on weight matrices under different settings
for layers, networks and data sets. Based on the previous work of Martin and Mahoney (2021b),
spectra of weight matrices at the terminal stage of training are classified into three main types:
Light Tail (LT), Bulk Transition period (BT) and Heavy Tail (HT). These different types, especially
HT, implicitly indicate some regularization in the DNNs. In this paper, inspired from Martin and
Mahoney (2021b), we identify the difficulty of the classification problem as an important factor
for the appearance of HT in weight matrices spectra. Higher the classification difficulty, higher the
chance for HT to appear. Moreover, the classification difficulty can be affected either by the signal-
to-noise ratio of the dataset, or by the complexity of the classification problem (complex features,
large number of classes) as well. Leveraging on this finding, we further propose a spectral criterion
to detect the appearance of HT and use it to early stop the training process without testing data.
Such early stopped DNNs have the merit of avoiding overfitting and unnecessary extra training
while preserving a much comparable generalization ability. These findings from the paper are
validated in several NNs (LeNet, MiniAlexNet and VGG), using Gaussian synthetic data and real
data sets (MNIST and CIFAR10).
Keywords: Deep Learning, Weight matrices, Heavy tailed spectrum, Early stopping

1. Introduction

In the past decade, deep learning (LeCun et al., 2015) has achieved impressive success in nu-
merous areas. Much research effort has since been concentrated on providing a rational explanation
of the success. The task is difficult, particularly because the training of most successful deep neural
networks (DNNs) relies on a collection of expert choices that determine the final structure of the
DNNs. These expert choices include nonlinear activation, hidden layer architecture, loss function,
back propagation algorithm and canonical datasets. Unfortunately, these empirical choices usually
bring non-linearity into the model, and non-convexity of optimization into the training process. As
a matter of consequence, practitioners of deep learning are facing certain lack of general guide-
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lines about the “right choices” to design and train an effective DNN for their own machine learning
problem.

To make progress on the understanding of existing trained and successful DNNs, it is impor-
tant to explore their properties in some principled way. To this end, a popular way has recently
emerged in the literature, namely spectral analysis of various large characteristic random matrices
of the DNNs, such as the Hessian matrices of the back-propagation algorithm, weight matrices be-
tween different layers, and covariance matrices of output features. Actually, such spectral analysis
helps to gain insights into the behavior of DNNs, and many researchers believe that these spectral
properties, once better understood, will provide clues to improvements in deep learning training
(Dauphin et al., 2014; Papyan, 2019b,a; Sagun et al., 2017; Yao et al., 2020; Granziol, 2020; Pen-
nington and Worah, 2019; Ge et al., 2021). Recently, Martin and Mahoney (2021b) studied the
empirical spectra distributions (ESD) of weight matrices in different neural networks, and observed
a “Phase Transition 5+1” phenomenon in these ESDs. Interestingly, the phenomenon highlights
signatures of traditionally regularized statistical models even though there is no set-up of any tradi-
tional regularization in the DNNs. Here, traditional regularization refers to the minimization of an
explicitly defined and penalized loss function of the form L(�) + � � p(�) with some tuning param-
eter � (� denotes all the parameters in the DNN). However, those well-known expert choices such
as early stopping also produces a regularization effect in DNNs, and this is the reason why such ex-
pert choices are recommended for practitioners. Actually, Kukacka et al. (2017) presented about 50
different regularization techniques which may improve DNN’s generalization. Among them, batch
normalization, early stopping, dropout, and weight decay are a few commonly used ones.

A main finding from Martin and Mahoney (2021b) is that the effects of these regularization
practices can be identified through the spectra of different weight matrices of a DNN. Moreover, the
forms of these spectra in the “5+1 phase transition” help assess certain degree of regularization in the
DNN. For instance, if these spectra are far away from the Marčenko-Pastur (MP) law, or the largest
eigenvalue departs from the Tracy-Widom (TW) Law (see Appendix A), there is strong evidence
for the onset of more regular structures in the weight matrices. A connection between implicit
regularization in a DNN and the forms of the spectra of its weight matrices is thus established.
Particularly, they considered the evolution of weight matrices spectra during the training process of
a DNN from its start to its final stage (usually 200-400 epochs), and pointed out that in late stage of
the training, the deviation of the spectra from the MP Law (namely the emergence of Heavy Tail)
indicates certain regularization of the DNN, synonym of an improved genelization ability. Indeed,
such regularization implies high-correlated entries in the weight matrices and thus leads to a heavy
tailed spectrum. Recently, Gurbuzbalaban et al. (2021) pointed out that for linear regressions the
SGD can also produce heavy tails in weight matrix spectra. Hodgkinson and Mahoney (2021) on
the other hand explored the impact of other factors on the emergence of heavy tails which relate to
the optimization process such as increasing the step size/decreasing the batch size, or increasing L2

regularization.
In Martin et al. (2021), the authors found that the “Heavy Tail based metrics can do much

better—quantitatively better at discriminating among series of well-trained models with a given
architecture; and qualitatively better at discriminating well-trained versus poorly trained models.”
Experiments conducted in this research confirm the importance of such heavy tail phenomenon for
the understanding of deep learning.

Specifically, we identify a precise factor, that we term as classification difficulty, which strongly
controls the appearance or not of heavy tails in weight matrix spectra at the final stage of the training.
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IMPACT OF CLASSIFICATION DIFFICULTY ON THE WEIGHT MATRICES SPECTRA INDEEPLEARNING

The greater classi�cation dif�culty, the higher possibility that heavy tails appear. Moreover, we
showcase two situations of dif�cult classi�cation that lead to heavy tails. In one situation, the data
quality is poor (or its signal-to-noise ration is low) and the emergence of heavy tails indicates an
attempt for DNNs to extract more features and increase testing accuracy. The other situation is more
related to a higher complexity of the classi�cation problems such as in modern data sets with a large
number of features and classes, and the emergence of heavy tails here indicates an attempt for DNNs
to identify relevant data features. While both situations have a high classi�cation dif�culty and lead
to heavy tails in weight matrix spectra, the training results could be entirely different. In the second
situation, the emergence of HT indicates a continuous and healthy feature extraction process that
gradually improves the test accuracy of the DNN. However, in the �rst situation, the emergence of
heavy tails indicates some excessive information extraction and thus leads to over�tting.

Note that as a factor controlling the heavy tail phenomenon, the classi�cation dif�culty differs
from the other factors identi�ed in the SGD or the hyper-parameters involved in the optimization
process as discussed in Gurbuzbalaban et al. (2021) and Hodgkinson and Mahoney (2021). Intu-
itively, the classi�cation dif�culty is a statistical metric for how dif�cult classes in a data set can be
identi�ed under certain model architectures. Nevertheless the classi�cation dif�culty is still a vague
concept and may depend on many properties of the data set and model architectures. In this paper,
we focus our discussion on two factors that directly impact on the classi�cation dif�culty, namely
the data quality and the complexity of the classi�cation problem.

As an important application of our observations on the spectrum types and on the emergence
of heavy tails, we propose a spectral criterion to guide the early stopping in practice. Without
prior information, heavy tails indicate some regularization at play or some problematic issues such
as over�tting in the training process. Roughly speaking, we early stop the training when there is
statistically signi�cant evidence that heavy tails appear in weight matrix spectra. Such early stopped
DNNs have the merit of avoiding over�tting and unnecessary extra training while preserving a
much comparable generalization ability. These �ndings from the paper are validated in several NNs
(LeNet, MiniAlexNet and VGG), using Gaussian synthetic data and real data sets (MNIST and
CIFAR10). Note that the idea of using evolution of weight matrices to monitor the training process
of a DNN has appeared earlier in the AI community with the online WeightWatcher package1.
However to our best knowledge, our spectral criterion is the �rst quantitative criterion based on the
weight matrix spectra to guide early stopping of a training process.

We summarize our contributions as follows:

1. The dif�culty of a classi�cation problem is identi�ed as a driving factor for the appearance
of heavy tails in weight matrices spectra. Experiments conducted on both synthetic and real
data sets support this �nding. Particularly, decreasing the SNR of the data set or increasing
the number of classesK in Gaussian data experiments all increase the classi�cation dif�culty
and generate heavy tails at the end of training. In real data experiments, heavy tails appear
more in experiments with CIFAR10 than with MNIST due to more complex features and a
higher classi�cation dif�culty in CIFAR10.

2. We reformulate the “5+1” classi�cation of Martin and Mahoney (2021b) into a smaller clas-
si�cation of the bulks of weight matrix spectra at �nal training stage: Light Tail (LT), Bulk
Transition period (BT) and Heavy Tail (HT). With a decreasing classi�cation dif�culty, these

1. [https://github.com/CalculatedContent/WeightWatcher], a companion package to Martin and Mahoney (2021b).
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spectrum bulks obey a phase transition from HT to BT, and then to LT. This simpler classi-
�cation of spectra types help demonstrate the phase transition phenomenon from HT to BT,
and then to LT, a phenomenon widely observed previously and also in our experiments. Our
�nding of the classi�cation dif�culty as the main driving factor of this phase transition is also
based on this simpler classi�cation.

3. Leveraging on these �ndings, we propose a spectral criterion to guide the early stopping
without access of testing data. The HT(BT)-based spectral criterion could not only cut off
a large training time with just a little drop of test accuracy, but also avoid over-�tting even
when the training accuracy is increasing.

The remaining of the paper is organized as follows. Sections 2 and 3 report our experimental
results on synthetic data and real data sets, respectively. The spectral criterion for early stopping
is introduced in Section 4. Related theoretical developments are put in Appendices A and B of the
supplementary materials, and additional algorithms and experimental results in Appendices C and
D.

2. Experiments with Gaussian Data

In order to develop our �ndings clearly, in this section, we adopt a widely used Gaussian input
model (Lee et al., 2018). By examining this well-de�ned Gaussian model for classi�cation, we
establish the evidence for a classi�cation dif�culty driving regularization via the con�rmation of a
transition phenomenon in the spectra of network's weight matrices in the order of HT! BT ! LT.
Moreover, the transition is quantitatively controlled by (i) the SNR of the Gaussian model, and (ii)
the number of classesK in the model2.

Empirically Results: Signal-to-noise ratio (SNR) is a common indicator to measure data quality
and greatly impacts the classi�cation dif�culty in a Gaussian model. We empirically examine the
spectra by changing the SNR and the number of classesK in different architectures:

1. Different NN structures: wider but shallower, or narrower but deeper. These structures are
similar to the various well known NNs' fully connected denser layers, such as LeNet and
MiniAlexNet;

2. Different layers in neural networks: all weight matrices in different layers have spectrum
transition driven by the SNR and the number of classesK ;

3. Different class numbers in input data: the spectrum transition is always observed in different
class numbers, and HT is more likely to emerge when increasing the number of classesK .

Table 1 gives a short summary of the �ndings when changing the SNR.
We empirically observe the spectrum transition in all settings. The transition is fully driven by

the classi�cation dif�culty. Therefore, in this Gaussian model, the indicated implicit regularization
in the trained DNN is data-effective, directly determined by the dif�culty. Precisely, under low
level SNR or high class numbers, the weight matrices of a DNN deviate far away from the common
MP model. Instead, they are connected to very different random matrix models. The decrease of
classi�cation dif�culty drives the weight matrices from Heavy Tailed model into MP models at the
�nal training epoch.

2. Codes are given in https://github.com/juve-xx/watchtheweight
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Table 1: Summary of spectrum transition in a controlled Gaussian model withK classes and
various SNRs.

SNR
Type of spectra Number of spikes

Weak Heavy Tail K � 1 or K

Middle
Heavy Tail

#
Bulk Transition period

K � 1 or K

Strong Light Tail (MP Law) K � 1 or K

2.1 Gaussian Data Sets

For the multi-classi�cation task, Gaussian model is a commonly used model for assessing theo-
retical properties of a learning system (Lee et al., 2018). In this model withK classes, data from a
classk 2 f 1; : : : ; K g arep-dimensional vector of the form

hi;k = � k + " i;k ; 1 � i � nk ; (2.1)

where� k 2 Rp is the class mean," i;k
iid� N (0; � 2I p) are Gaussian noise,nk is the total number of

observation from classk. (This Gaussian data model is referred to as theK -way ANOVA model in
the statistics literature.) The signal-to-noise ratio (SNR) for thisK -class Gaussian model is de�ned
as

SNR= Ave
f k;k 0g

jj � k � � k0jj
�

: (2.2)

Herejj � jj denotes the Euclidean norm inRp, and the average is taken over the
� K

2

�
pairs of classes.

We aim at examining the impact of the classi�cation dif�culty on the weight matrix spectra in a
trained NN for such Gaussian data. We thus consider two settings for the class meansf � kg which
lead to different families of SNRs. In all the remaining discussions, we will take� = 1 .

DATASET D1(� ): CLASS MEANS WITH RANDOMLY SHUFFLED LOCATIONS

Consider a base mean vectoru = ( m; : : : ; m; m + �; : : : ; m + � )T 2 Rp where half of the compo-
nents arem, and the other half,m + � . For the class means� k , we reshuf�e the locations of these
components randomly (and independently). Formally, for each classk, we pick a random subset
I k � f 1; :::; pg, of sizep=2, and de�ne the mean for this class as

� k = m1I k + ( m + � )1I c
k
: (2.3)

Here for a subsetA � f 1; :::; pg, 1A is the indicator vector ofA with coordinates1A (i ) = 1f i 2 Ag
(1 � i � p).

This setting with randomized locations is motivated by an essential empirical �nding from ex-
ploring a few classical trained DNNs such as MiniAlexNet and LeNet. Indeed, we found that in
these DNNs, the global histograms of the features from all the neurons are pretty similar, with very
comparable means and variances, for various NNs; the differences across the NNs are that high and
low values of the features appear in different neurons (locations). The randomly shuf�ed means
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used in our experiments are designed to imitate these working mechanisms observed in real-world
NNs.

It follows that for the difference� k � � k0 = ( zj ); 1 � j � p from two classesk 6= k0, its
coordinateszj take on the values� � , 0 and� with probability 1

4 , 1
2 and 1

4 , respectively. Clearly, the
model SNR will depend on the tuning parameter� . By Hoeffding inequality, we �rst conclude that

P
� �

�
�
�
jj � k � � k0jj2

p
�

� 2

2

�
�
�
� � �� 2

�
� 1 � exp (� 2� 2p);

or equivalently,

P
�

�
p

2

p
1 � 2� �

jj � k � � k0jj
p

p
�

�
p

2

p
1 + 2�

�
� 1 � exp (� 2� 2p)

Note that
p

1 + x � 1 + x,
p

1 � x � 1 � x when0 < x < 1. By taking � =
p

logp=p, we
conclude that with probability at least1 � 1=p2,

�
�
�
� jj � k � � k0jj � �

r
p
2

�
�
�
� � �

p
2 logp:

Therefore at a �rst-order approximation, the SNR (2.2) in this Gaussian model is (with� = 1 ),

SNR= Ave
f k;k 0g

jj � k � � k0jj
�

� �

r
p
2

: (2.4)

DATASET D2(t): CLASS MEANS OFETF TYPE

Consider the family of vectorsf vkg1� k� K wherevk is de�ned by

vk = 1f i = kg �
1
K

1f 1� i � K g; 1 � i � p:

Sovk has support onf 1; : : : ; K g andjjvk jj =
p

(K � 1)=K . The normalized familyf vk=jjvk jjg
is called aK -standard ETF structure (Papyan et al., 2020).

We de�ne thek-th class mean as� k = tvk , and use the scale parametert > 0 to tune the SNR
of the model. It is easy to see thatjj � k � � k0jj =

p
2t so that the model SNR is

SNR= Ave
f k;k 0g

jj � k � � k0jj
�

= jj � k � � k0jj =
p

2t: (2.5)

(Papyan et al., 2020) has shown that the ETF structure is an optimal position for the �nal training
outputs. Many experiments on real data sets lead to ETF structure for �nal engineered features.
From a layer-peered perspective as mentioned in (Ji et al., 2021), each layer in NN can be regarded
as an essential part of feature engineering, and the feature is extracted layer by layer. The ETF
structure model considers that the �rst Dense layer behind the convolution layer is already close to
the end of feature extraction.

In our experiments, we takem = � 0:2 (and� = 1 ). The size of each classk is nk = 7500
in the training dataset, andnk = 800 in test dataset. The number of classesK takes on the values
f 2; 5; 8g on all datasets. Table 2 gives the ranges of the model SNR observed in different dataset/NN
combinations with the chosen values of tuning parameters� andt.
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Table 2: Range of SNRs observed in various datasets/ networks combinations.
D1(� ) D2(t)

� SNR interval t SNR interval
NN1 0.01 [0.01, 1.19] 0.08 [0.08, 4.80]

0.05 [1.20, 2.00]
NN2 0.005 [0.005, 0.4] 0.08 [0.08, 4.80]

2.1.1 STRUCTURE OF NEURAL NETWORKS

We consider two different neural networks, a narrower but deeper NN1, and a wider but shal-
lower NN2. The number of layers and their dimensions are shown in Figure 1:

NN1: 100! 1024! 512! 384! 192! K;
NN2: 2048! 1024! 512! K:

The activation function is ReLU(x) = max( x; 0). We do not apply any activation function on the
last layer.

(a) NN1 (b) NN2

Figure 1: The two NNs considered which imitate the dense layer in well-known NNs such as
MiniAlexNet, VGG and LeNet.

2.1.2 OPTIMIZATION METHODOLOGY

Following common practice, we minimize the cross-entropy loss using stochastic gradient de-
scend with momentum0:9. All the datasets are trained with batch size =64 on a single GPU, for
248 epochs. Trained NNs are saved for the �rst 10, and then every four epochs. The total number
of saved NNs is(136 + 60 + 80 + 60) � 3 � 70 = 70560. The initialization is Pytorch's default
initialization, which follows a uniform distribution. The learning rate is0:01.
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2.2 Results on synthetic data experiments

To investigate the in�uence of the data SNR on the whole training process, we �rst report syn-
thetic data experiments results.

2.2.1 THREE TYPES OF SPECTRUM BULK

We use SNR to measure the data quality and focus on the non-zero eigenvalues of the matrix
WW T . Clearly the SNR can directly impact on the classi�cation dif�culty. The weight matrices
W we consider in this section are those at the �nal epoch (248th). In the Gaussian data sets, with
different values of SNR, we have observed the following three typical types for the bulk spectrum
of the weight matrices:

HT : Heavy Tail

BT : Bulk Transition

LT : Light Tail (MP Law)

We gradually increase the SNR of the Gaussian model and report in Figures 2-4 examples of
spectra of weight matrices at the end of training. The SNR is increasing from Figure 2 to Figure 4
and within each �gure, from plot (a) to plot (d). In Figure 2 the SNR is relatively low, the weight
matrix spectra (in blue) show signi�cant departure from the reference MP spectrum (in red). These
spectra are de�ned as of heavy tail type (class HT). In contrast, spectra in Figure 4 with relatively
high SNR, closely match the reference MP spectrum, and this corresponds to the light tail class LT.
More complex structures appear in the intermediate Figure 3 which correspond to medium values
of the SNR. A transition is taking place from Figure 3(a), which is still close to a HT spectrum, to
Figure 3(d), which is now close to a MP spectrum. Spectra as those shown in Figue 3 are referred
as the bulk transition class BT.

In addition to the bulk transition above, the spike eigenvalues (outliers) also have a characteristic
movement. Papyan (2020) reported that in general the totalK = 8 spikes are grouped in two
clusters withK � 1 = 7 spikes (determined by the between-class covariance matrix) and a singleton
(determined by the general mean), respectively. We now describe the evolution of the group and
the singleton with gradually increased SNR and the full transition HT! BT! LT between the bulk
classes. At the very beginning (Figure 2(a)), all the spikes are hidden in the bulk. When the SNR
increases, the group of 7 spikes emerge from the bulk and stay outside the spectrum forever. The
movement of the singleton spike is more complex, hiding in and leaving the bulk repeatedly. There
are particular moments where the group and the singleton meet and stay close each other: we then
see a group of 8 spikes.

We use “XX(m,n)” to describe the whole empirical spectral distribution (ESD) of weight ma-
trices including both the bulk and spikes. Here “XX” means one of the three bulk types inf HT,
BT, LTg. The number “m” or “n” gives us position information of the two groups of the spikes,
numbered in increasing order of their values. For instance, BT(1,7) displayed in Figure 3(d), means
the bulk type is BT, the singleton spike lays between the bulk and the group of 7 spikes; HT(0,8)
means the group of 7 spikes and the singleton are mixed; HT(0,7) means we see only the group of
7 spikes.

Remark 1 The spectrum transition from HT to BT and LT can also be assessed by more quantitative
criteria. (i) The transition from HT to BT is related to the position of the group ofK � 1 spikes, the
singleton spike and the bulk edge. When the group ofK � 1 spikes is large enough, the HT type
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ends and the BT phase starts. Note that here the bulk type is heavy-tailed in both regimes HT and
BT. (ii) The transition from BT to LT can be directly detected by comparing the bulk spectrum to
the reference MP spectrum. Precisely, this can be achieved using our spectral distance statisticŝn

introduced in Section 4.
Remark 2 Regarding the special case of the MP spectrum with unit aspect ratio, the density is
unbounded at the origin. However, the right edge is regular and the spectrum is still classi�ed as a
LT type.

(a) HT(0,0) (b) HT(0,1) (c) HT(7,1) (d) HT(0,8)

Figure 2: Examples of observed HT type spectrum bulks. From plot (a) to (d) the SNR increases.
The experiments are conducted from Synthetic data and the pictures are examples for the
speci�c classi�cation.

(a) BT(1,7) (b) BT(0,7) (c) BT(0,7) (d) BT(1,7)

Figure 3: Examples of observed Bulk Transition (BT) type spectrum bulks. From plot (a) to (d)
the SNR increases from the �rst and second column to the third and last. The experiments
are conducted from Synthetic data and the pictures are examples for the speci�c classi�-
cation.
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