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Abstract: Big data present new theoretical and computational challenges as well as tremendous
opportunities in many fields. In health care research, we develop a novel divide-and-conquer
(DAC) approach to deal with massive and right-censored data under the accelerated failure time
model, where the sample size is extraordinarily large and the dimension of predictors is large
but smaller than the sample size. Specifically, we construct a penalized loss function through
approximating the weighted least squares loss function by combining estimation results without
penalization from all subsets. The resulting adaptive LASSO penalized DAC estimator enjoys the
oracle property. Simulation studies demonstrate that the proposed DAC procedure performs well
and also reduces the computation time with satisfactory performance compared to estimation
results using the full data. Our proposed DAC approach is applied to a massive dataset from the
Chinese Longitudinal Healthy Longevity Survey.
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1. INTRODUCTION

Statistical analysis for big data has become increasingly important with the
rapid advance in technologies and the corresponding application in many diverse
fields of science and humanities, including e-commerce, finance, engineering,
genomics, and biomedical imaging. In this digital era, we can gain access to
massive data collected in various locations and explore the potential for turning
“big data” to “big information”. It is impractical and unnecessary to centrally
store and process millions, and sometimes billions of data records. For this rea-
son, traditional statistical methods and computational algorithms are no longer
applicable. In medical research, the main goals of analyzing big data are to offer
insights into the possible relationships between predictors and response variables
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of interest and to accurately predict future outcomes. Big data analysis enables
us to perform in-depth and wide-ranging analysis deemed impossible a decade
ago, but also presents new challenges such as high-dimensionality, heterogeneity
and complexity of data structures (Fan et al, 2014).

In recent years, two methods have commonly been used to tackle the chal-
lenges arising due to massive data. One is the divide-and-conquer (DAC) algo-
rithm (e.g., Zhang et al., 2013; Chen & Xie, 2014; Battey et al., 2018; Chan
& Peng, 2018); the other is the resampling-based method (e.g., Kleiner et al.,
2014; Sengupta et al., 2016; Wang et al., 2018). By the DAC method, a massive
dataset is partitioned into small subsamples, and estimators obtained from each
subsample are then aggregated to form the final estimator. For example, Zhang
et al. (2013) and Huang & Huo (2019) used DAC for M-estimators; Chen & Xie
(2014) and Lee et al. (2017) applied DAC to the linear and generalized linear
models. Battey et al. (2018) used DAC to study hypothesis testing and parame-
ter estimation in a general likelihood-based framework in both low-dimensional
and sparse high-dimensional settings; Chen & Peng (2018) applied DAC to U-
statistics and M-estimators. Chen & Peng (2018) pointed out that the resampling-
based method has some limitations such as high computational cost when the
massive data are stored at different locations. Additionally, the DAC strategy
has been extended to a sparse Cox regression by Wang et al. (2019); Xue et al.
(2020) developed a DAC algorithm that updates test statistics for hypothesis test-
ing of the proportional hazards assumption under the Cox model as blocks of data
are received sequentially. Moreover, the DAC algorithm has been incorporated
in many existing techniques from various fields to improve precision and effi-
ciency, namely, the evolutionary algorithm for large-scale optimization (Yang et
el., 2019), information-based optimal subdata selection algorithm (Wang, 2019),
an coevolutionary algorithm to enhance resource allocation for better control of
a spreading virus (Zhao et al., 2020), and precision oncology for subtypes of
sarcoma (Pestana et al., 2020), among others.

The DAC approach has been extensively used to develop statistical inferences
for massive data when the sample size is exceedingly large and the predictor di-
mension is not small but smaller than the sample size. Wang et al. (2019) devel-
oped a fast and efficient DAC algorithm under the sparse Cox model for use with
massive datasets. To the best of our knowledge, there is no existing alternative
for massive survival data with censoring when the proportional hazards assump-
tion is violated and the Cox model is no longer appropriate. To fill the gap, we
propose a novel DAC approach for an accelerated failure time (AFT) model: (i)
Partition massive data into small subsets; (ii) Fit an AFT model to each subset
by the weighted least squares (WLS) method without penalization; (iii) Approx-
imate the WLS function using the exact Taylor expansion of the loss function at
the WLS estimator and combination of the estimation results based on all sub-
sets; (iv) Obtain the DAC estimator using the approximated WLS loss function
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the adaptive LASSO penalization.
A remarkable feature of this proposed DAC estimator is that we apply the

adaptive least absolute shrinkage and selection operator (aLASSO) penalization
to parameters only once. The proposed methodology provides a useful alternative
for fitting massive data with censored response variables when the proportional
hazards assumption of the Cox model is violated. Our proposed DAC estima-
tors enjoy the oracle property and outperform the competing full sample-based
estimators with respect to required computational time.

The remainder of this paper is organized as follows. Section 2 describes our
proposed DAC approach under the AFT model with the aLASSO penalty, and
Section 3 establishes its asymptotic properties. In Section 4 we report the results
of simulation studies to evaluate the performance of this proposed DAC method-
ology and apply it to a practical question arising from the Chinese Longitudinal
Healthy Longevity Survey (CLHLS) in Section 5. Finally, we discuss our results
and possible future work in Section 6. Proofs of our theoretical results may be
found in the Appendix.

2. METHODS

2.1. The AFT model with an adaptive LASSO

Consider a survival study that consists of n independent subjects. Let T denote
the logarithm of the failure time, and (X1, . . . , Xp)

> be a p-dimensional covari-
ate vector. The AFT model (e.g., Buckley & James, 1979; Jin et al., 2003; Huang,
Ma, & Xie, 2006) takes the form,

T = X>β + ε,

where β = (β0, β1, . . . , βp)
> is a (p+ 1)-dimensional vector of unknown regres-

sion parameters, X = (1, X1 . . . , Xp)
>, and ε is a random error. Due to censor-

ing, we only observe (Y, δ,X), where Y = min(T,C), δ = I(T ≤ C), C is the
logarithm of the censoring time, and I(·) is the indicator function. The observed
data {(Yi, δi,X i); i = 1, . . . , n} are i.i.d. copies of (Y, δ,X).

Let F0(·) denote the distribution function of T , and F̂n(·) be the correspond-
ing Kaplan–Meier estimator. Furthermore, let Y(1) ≤ · · · ≤ Y(n) denote the or-
der statistics of Yi (i = 1, . . . , n), δ(1), . . . , δ(n) and X(1), . . . ,X(n) be the cor-
responding censoring indicators and covariate vectors. Following Stute (1993),
F̂n(·) can be expressed as F̂n(y) =

∑n
i=1wiI(Y(i) ≤ y), where wi (i = 1, . . . , n)

are the Kaplan–Meier weights, defined as the jumps in the Kaplan–Meier esti-
mator,

w1 =
δ(1)
n
, wi =

δ(i)
n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
(i = 2, . . . , n).
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The weighted least squares (WLS) loss function is defined as

`n(β) =
n∑
i=1

wi(Y(i) −X>(i)β)2. (1)

When the dimension p is small, one can obtain the WLS estimator by di-
rectly minimizing `n(β). Under some regularity conditions, Stute (1993, 1996)
proved the WLS estimator is

√
n-consistent and asymptotically normal. Unfor-

tunately, this method does not perform well when p is large. Under the sparsity
assumption, only a small number of covariates influence the response variable.
To simultaneously identify these contributing covariates and obtain parameter
estimates, we consider the aLASSO penalized objective function,

Qn(β) = `n(β) + λ

p∑
j=0

|βj|
|β̃j|

, (2)

where λ > 0 is a tuning parameter, and β̃ = (β̃0, β̃1, . . . , β̃p)
> is an initial esti-

mator. A simple choice of β̃ is the WLS estimator, i.e., β̃ = argminβ`n(β). The
aLASSO penalized estimator is given by

β̂ = argminβQn(β). (3)

However, when n is extraordinarily large, directly minimizing Qn(β) is com-
putationally infeasible. To overcome these difficulties, we propose a novel DAC
approach to the sparse AFT model.

2.2. The DAC procedure

Let Dfull = {(Yi, δi,X i), i = 1, . . . , n} denote the full data, and Ifull =
{1, . . . , n} the corresponding index set. Assume n is exceedingly large and p is
also large but n� p. First, we randomly divide the full data Dfull into K subsets
Dk (k = 1, . . . , K). Without loss of generality, we assume n∗ = n/K is an inte-
ger and these subsets have the same sample size. Let Ik = {(k − 1)n∗ + 1, (k −
1)n∗ + 2, . . . , kn∗} denote the index of the kth subset, Dk = {(Yi, δi,X i), i ∈
Ik} denote the data in the kth subset. We assume that K = O(nα), 0 ≤ α < 1.

A standard DAC method is to obtain the aLASSO penalized estimator based
on each subset Dk (k = 1, . . . , K), and then combine the subset-specific estima-
tors into an aggregated estimator by arithmetic averaging. Specifically, the DAC
estimator is

β̂
∗
DAC = K−1

K∑
k=1

β̂Ik , (4)
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where β̂Ik = argminβQIk(β), and QIk(β) is similarly defined as in Equation
(2), based on the kth subset Dk. This method can overcome the computational
difficulty of Qn(β) when n is extraordinarily large. However, seeking the opti-
mal tuning parameter and enumerating the corresponding parameter estimatesK
times can still occupy considerable computational time.

To reduce the computational burden, we propose a novel DAC method from
another perspective. We first apply the Taylor expansion to `n(β) at β̃, where
β̃ = Σ̂

−1∑n
i=1 ωiY(i)X(i) and Σ̂ =

∑n
i=1 ωiX(i)X

>
(i). Note that the third-order

derivative of `n(β) equals zero, we obtain the exact expression

`n(β) = `n(β̃) + ˙̀
n(β̃)(β − β̃) +

1

2
(β − β̃)> ῭

n(β̃)(β − β̃), (5)

where ˙̀
n(·) and ῭

n(·) denote the first- and second-order derivatives of `n(β),
respectively. By the definition of β̃, we have ˙̀

n(β̃) = 0. Thus Equation (5) can
be simplified to

`n(β) = `n(β̃) +
1

2
(β − β̃)> ῭

n(β̃)(β − β̃),

where ῭
n(β̃) = Σ̂. By ignoring the constant `n(β̃), the objective function Qn(β)

in Equation (2) can be simplified to

Q∗n(β) = (β − β̃)>Σ̂(β − β̃) + λ

p∑
j=0

|βj|
|β̃j|

.

When n is extraordinary large, we construct the DAC approximations for β̃ and
Σ̂. To this end, we let β̃Ik and Σ̂Ik be calculated based on the kth subsetDk, and
define

β̃DAC = K−1
K∑
k=1

β̃Ik , Σ̂DAC = K−1
K∑
k=1

Σ̂Ik .

Using β̃DAC and Σ̃DAC to approximate β̃ and Σ̂ respectively, we obtain the
following approximation to Q∗n(β̃):

Q†n(β) = (β − β̃DAC)>Σ̂DAC(β − β̃DAC) + λ

p∑
j=0

|βj|
|β̃DAC,j|

,
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where β̃DAC = (β̃DAC,0, β̃DAC,1, . . . , β̃DAC,p)
>. Hence we propose the aLASSO

penalized DAC estimator β̂DAC as

β̂DAC = argminβQ
†
n(β). (6)

Let Ỹ ∗ = Σ̂
1/2

DACβ̃DAC and X̃
∗

= Σ̂
1/2

DAC, where X̃
∗

is a (p+ 1)× (p+ 1) matrix.
The optimization problem identified in Equation (6) is equivalent to

β̂DAC = argminβ

{
(Ỹ ∗ − X̃

∗
β)>(Ỹ ∗ − X̃

∗
β) + λ

p∑
j=0

|βj|
|β̃DAC,j|

}
. (7)

Intuitively, the computation time involved in solving the problem posed in Equa-
tion (7) reduces substantially compared to solving the version posed in Equation
(3) when n� p. Moreover, this proposed DAC method for computing β̂DAC as
outlined in Equation (6) is much faster than the standard DAC method for com-
puting β̂

∗
DAC using Equation (4) since it only runs one round for the penalization

with the optimal selection of tuning parameter λ, while the standard DAC method
needs to run K rounds for the penalized estimation.

To solve the optimization problem posed in Equation (7), we apply the local
quadratic approximation (Fan & Li, 2001) to the aLASSO penalty function,

|βj|
|β̃DAC,j|

≈
|β∗j |
|β̃DAC,j|

+
1

2

1

|β̃DAC,j| · |β∗j |
, (β2

j − (β∗j )
2),

where β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p)
> is a nonzero initial value that is close to β̂DAC.

Similar to the arguments in Fan & Li (2001), β̂DAC can be obtained by iteratively
computing the ridge regression,

β̂DAC =

(
X̃
∗>
X̃
∗

+
1

2
λΩ(β∗)

)−1
X̃
∗>
Ỹ ∗, (8)

where Ω(β∗) = diag( 1

|β̃DAC,0|·|β∗0 |
, 1

|β̃DAC,1|·|β∗1 |
, . . . , 1

|β̃DAC,p|·|β∗p |
).

We summarize this new DAC algorithm as follows.
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Algorithm 1 The DAC algorithm

Step 1. For each subset Dk (k = 1, . . . , K), compute Σ̂Ik and β̃Ik .
Step 2. Construct the DAC approximations to β̃ and Σ̂ as β̃DAC = K−1

∑K
k=1 β̃Ik

and Σ̂DAC = K−1
∑K

k=1 Σ̂Ik .

Step 3. Compute the aLASSO penalized DAC estimator β̂DAC = argminβQ
†
n(β).

Step 4. To solve the optimization problem in Step 3, we propose the following itera-
tive steps:

(i) Set a nonzero initial value β∗, and let m = 1.

(ii) Compute β̂
(m)

DAC =
(
X̃
∗>
X̃
∗

+ 1
2
λΩ(β∗)

)−1
X̃
∗>
Ỹ ∗.

(iii) Let β∗ = β̂
(m)

DAC. Update Ω(β∗) and compute the new β̂
(m+1)

DAC .
(iv) Repeat Steps (ii) and (iii) until a prespecified convergence criterion is met, i.e.,

‖β̂
(m+1)

DAC − β̂
(m)

DAC‖ < ε, with ε = 10−7.

The key advantage of this DAC strategy is that it retains the precision of vari-
able selection and parameter estimation while significantly reducing the compu-
tational time, especially for massive data where sample size n is extraordinarily
large and the number of covariates p is also large.

2.3. Selection of the tuning parameter

Selection of the tuning parameter λ is crucial to the performance of the pro-
posed method. Various choices have been proposed to select the optimal λ in
the aLASSO regularization. Here we adopt the Bayesian information criterion
(BIC), which was developed by Schwarz (1978). Specifically, for any tuning pa-
rameter λ, β̂DAC,λ denotes its corresponding aLASSO penalized DAC estimator.
We define BIC as

BIC(λ) = n(β̂DAC,λ − β̃DAC)>Σ̂DAC(β̂DAC,λ − β̃DAC) +m log(n),

where m is the number of nonzero elements of β̂DAC,λ. The optimal λ equals

λ̂ = argminλBIC(λ). (9)

3. THEORETICAL PROPERTIES

Before we establish the asymptotic properties of our proposed DAC estimator
β̂DAC, we first introduce some notation. Let β0 = (β00, β01, . . . , β0p)

> represent
the unknown true value of β. Let H denote the distribution function of Y , and G
denote the distribution function of C. The endpoints of Y , T and C are denoted
by τY , τT , and τC , respectively. Let F 0 represent the joint distribution of (X, T ).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Define

F̃ 0(x, t) =

{
F 0(x, t), t < τY ,

F 0(x, τY−) + F 0(x, τY )I(τY ∈ A), t ≥ τY ,

where A is the set of axioms of H . Define two sub-distribution functions,

H̃11(x, y) = P (X ≤ x, Y ≤ y, δ = 1), H̃0(y) = P (Y ≤ y, δ = 0).

For j = 1, . . . , p, define

γ0(y) = exp

{∫ y−

0

H̃0(ds)

1−H(s)

}
,

γ1,j(y;β) =
1

1−H(y)

∫
I(s > y)(s− x>β)xjγ0(s)H̃

11(dx, ds),

γ2,j(y;β) =

∫∫
I(v < y, v < s)(s− x>β)xjγ0(s)

{1−H(v)}2
H̃0(dv)H̃11(dx, ds).

For l = 1, 2, let γl(y;β) = (γl,0(y;β), . . . , γl,p(y;β))>.
According to Huang, Ma, & Xie (2006), we need the following regularity

conditions:

(A1) E(ε|X) = 0.
(A2) T and C are independent and P (T ≤ C|T,X) = P (T ≤ C|T ).
(A3) Σ0 = E(XX>) is finite and nonsingular.
(A4) τT < τC or τT = τC =∞.
(A5) E

{
(Y −X>β0)

2XX>δ
}
<∞;

∫
|(y − x>β0)xj|D1/2(y)F̃ 0(dx, dy) <∞

for j = 0, 1, . . . , p, where D(y) =
∫ y−
0
{1−H(y)}−1{1−G(y)}−1G(dy).

We now state the theoretical properties of our proposed DAC estimator.

Theorem 1. Suppose that Assumptions (A1)–(A5) hold. If
√
nλ→ 0 as n→

∞, then we have β̂DAC − β0 = OP (n−1/2).

Theorem 1 shows that for a properly chosen λ, the proposed DAC esti-
mator β̂DAC is root-n consistent. Under the sparsity assumption, only a small
number of covariates are related to the response variable. Without loss of gen-
erality, we assume that the first d0 covariates are relevant; that is, β0j 6= 0

for 0 ≤ j ≤ d0 and β0j = 0 for d0 < j ≤ p. Define β0 = (β>0,a,β
>
0,b)
>, where

β0,a = (β00, β01, . . . , β0d0)
> and β0,b = (β0(d0+1), . . . , β0p)

>. Correspondingly,

we write β̂DAC = (β̂
>
DAC,a, β̂

>
DAC,b)

>. Decompose the matrix Σ0 into a block

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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matrix form,

Σ0 =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is the first (d0 + 1)× (d0 + 1) submatrix.

Theorem 2. Suppose that Assumptions (A1)–(A5) hold. If
√
nλ→ 0 and nλ→

∞ as n→∞, then we have

(i) Consistency in variable selection: limn→∞ P
(
β̂DAC,b = 0

)
= 1;

(ii) Asymptotic normality:
√
n(β̂DAC,a − β0,a)

d−→ Σ−111W a,

where d−→ stands for convergence in distribution, W a is the first (d0 +
1) part of W , W ∼ N(0,ΣW ), and ΣW = Var{δγ0(Y )(Y −X>β0)X +
(1− δ)γ1(Y ;β0)− γ2(Y ;β0)}.

Theorem 2 shows that the proposed the DAC estimator possesses the ora-
cle property. The unimportant predictors can be excluded with probability ap-
proaching to 1, and the estimated nonzero coefficients have the same asymptotic
normality as the ideal estimator.

4. SIMULATION STUDIES

We conducted extensive simulation studies to evaluate the finite-sample perfor-
mance of our proposed method. First, we carried out a large sample simulation
to demonstrate its accuracy and efficiency. Second, we carried out a comparison
study to assess the proposed DAC method against the full sample-based adaptive
lasso estimator, denoted as β̂Full.

We generated the logarithm of the failure time from an AFT model

T = X>β + ε,

where ε ∼ N(0, σ2), for σ = (0.1, 0.5), and X = (1,Z>)>, Z ∼ Np(0,Σ)
with Σ = (ρ|i−j|) for ρ = (0.3, 0.5, 0.7), i, j = 1, . . . , p. We considered three
choices of β that represent different signal strengths and sparsity: (i) β(1) =
(0, 0.8, 0.7, 0.6, 0.5, 0.4,0>p−5), (ii) β(2) = (0, 0.35, 0.3, 0.2, 0.1, 0.07,0>p−5), and
(iii) β(3) = (0, 0.8>2 , 0.7

>
2 , 0.6

>
2 , 0.5

>
2 , 0.4

>
2 ,0

>
p−10), where a>2 = (a, a)>. The

censoring times were generated from a uniform distribution U(0, τ), where τ
was chosen to achieve the intended censoring rates 20%, 50% and 70%, respec-
tively. We set the full sample size n = 106, the number of subsets K = 100,
where each subset has sample size n∗ = 104. For each configuration, we con-
sidered the number of covariates p = (50, 100) and each combination of study
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settings M = 500 times. Two additional scenarios were also considered, (p =
50, K = 2000) and (p = 200, K = 100). We used the R packages condSURV to
compute the Kaplan–Meier weights and glmnet to obtain the aLASSO penalized
estimator.

Tables 1–4 summarize the proportion of covariates correctly identified as hav-
ing zero and nonzero regression coefficient estimates. Even when the number
of noncontributing covariates increased from p = 50 to p = 200, the proposed
model was still capable of correctly classifying covariates as either associated,
or not associated, with the response variable. The performance was not affected
if we drastically increased the number of subsets or covariates. Furthermore, it is
worth mentioning that for a small covariate effect such as 0.07 in β(2), the model
was able to distinguish such a small value from 0 with 100% accuracy, even with
a censoring rate as high as 70%.

TABLE 1: Proportion of parameters estimated as zero by the proposed DAC method under AFT model with p = 50
and K = 100 over 500 repetitions

β(1) β(2) β(3)

σ ρ CR 0.8 0.7 0.6 0.5 0.4 0 0.35 0.3 0.2 0.1 0.07 0 0.8 0.7 0.6 0.5 0.4 0

0.1 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note: “CR” denotes censoring rate.

We also conducted an additional simulation study to compare the finite-
sample performance of our proposed DAC estimator with the full data-based
estimator. We used the bootstrap method to estimate the standard errors of the
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TABLE 2: Proportion of parameters estimated as zero by the proposed DAC method under an AFT model with p = 50
and K = 2000 over 500 repetitions

β(1) β(2) β(3)

σ ρ CR 0.8 0.7 0.6 0.5 0.4 0 0.35 0.3 0.2 0.1 0.07 0 0.8 0.7 0.6 0.5 0.4 0

0.1 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note: “CR” denotes censoring rate.

estimators obtained from the DAC approach and the full sample. In this study
we fixed β = (0, 0.8, 0.7, 0.6, 0.5, 0.4,0>p−5) with p = 10, σ = 0.5, ρ = 0.5 and
three target censoring rates of 20%, 50%, and 70%. To shorten the computa-
tional time, we used the sample size n = 105 and the number of subsets K = 10.
For each censoring rate, we ran 500 simulations, and used 500 bootstrap sam-
ples based on each simulated dataset for estimating the standard deviations. To
further reduce the computational burden, we used the optimal tuning parame-
ters λ̂DAC and λ̂Full determined from the proposed DAC algorithm and the full
dataset-based penalized estimation based on each simulated dataset as the op-
timal tuning parameters for computing the corresponding aLASSO penalized
estimates, over 500 bootstrap repetitions.

In Table 5 we report the observed values of the following performance mea-
sures:

• Bias: the average deviation of β̂ from the true value;
• SSE: sample standard error;
• ESE: the average estimated standard error;
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TABLE 3: Proportion of parameters estimated as zero by the proposed DAC method under an AFT model with
p = 100 and K = 100 over 500 repetitions

β(1) β(2) β(3)

σ ρ CR 0.8 0.7 0.6 0.5 0.4 0 0.35 0.3 0.2 0.1 0.07 0 0.8 0.7 0.6 0.5 0.4 0

0.1 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note: “CR” denotes censoring rate.

• GMSE: global mean squared error, defined as

GMSE =
1

500

500∑
m=1

(
β̂DACm

− β0

)
Σ
(
β̂DACm

− β0

)T
.

According to the summary results found in Table 5, our proposed DAC
approach yields remarkably similar observed values to the corresponding full
sample-based estimation. Moreover, the SSEs and ESEs in all cases are nearly
identical, indicating the appropriateness of the bootstrap methodology.

Next, we compared the computational time required to obtain parameter es-
timates for our proposed DAC method and for full data-based evaluation. To
ensure fair comparison, the simulation was carried out as a single-core job on an
Intel Xeon Gold 6248R, 24C/48T, CPU @ 3.0GHz. Table 6 summarizes the ob-
served computational times based on 10 replications for n = (105, 2× 105, 5×
105, 106, 2× 106) and p = (50, 100, 200) with σ = 0.5, ρ = 0.5, and censoring
rate 20%. Clearly, our proposed DAC method required less computational time
than the competing full data-based evaluation in all cases, and the improvement
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TABLE 4: Proportion of parameters estimated as zero by the proposed DAC method under an AFT model with
p = 200 and K = 100 over 500 repetitions

β(1) β(2) β(3)

σ ρ CR 0.8 0.7 0.6 0.5 0.4 0 0.35 0.3 0.2 0.1 0.07 0 0.8 0.7 0.6 0.5 0.4 0

0.1 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.1 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.3 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.5 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0.5 0.7 20% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

50% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

70% 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Note: “CR” denotes censoring rate.

in speed increases with larger sample sizes and higher dimensionality. In prac-
tice, each subset would be evaluated in parallel on separate machines with the
proposed DAC method, which further reduces the associated computational bur-
den.

5. APPLICATION TO CLHLS DATA

We applied our proposed DAC method of estimation to the problem of identi-
fying risk factors associated with human mortality based on the CLHLS data.
During the period from 1998 to 2014, the CLHLS study collected health and
quality of life-related information among elderly people aged 65 or older from 22
provinces in China (Yi et al., 2017). The survey was conducted in seven waves,
and carried out every two years with new participants entering the study to re-
place the deceased and individuals lost to follow-up. A total of 44,576 individuals
were interviewed during the seven waves of the study. See to Yi et al. (2008) for
a detailed description of the CLHLS data. After excluding subjects with missing
data, those participants younger than or deceased at 65 as well as the last two
waves, 40,530 subjects remained for this analysis, with 8,611 in the first wave,
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TABLE 5: Comparison of the proposed DAC estimate β̂DAC vs the full sample-based estimate β̂Full

CR β0 0.8 0.7 0.6 0.5 0.4

β̂DAC

20% BIAS -0.0166 -0.0144 -0.0124 -0.0103 -0.0084

SSE 0.0025 0.0029 0.0028 0.0027 0.0024

ESE 0.0025 0.0028 0.0027 0.0027 0.0025

GMSE 0.0018

50% BIAS -0.0483 -0.0426 -0.0365 -0.0307 -0.0243

SSE 0.0038 0.0042 0.0041 0.0041 0.0035

ESE 0.0037 0.0039 0.0039 0.0039 0.0036

GMSE 0.0152

70% BIAS -0.0804 -0.0698 -0.0598 -0.0501 -0.0401

SSE 0.0048 0.0057 0.0052 0.0050 0.0045

ESE 0.0048 0.0053 0.0052 0.0051 0.0048

GMSE 0.0412

β̂Full

20% BIAS -0.0166 -0.0142 -0.0124 -0.0102 -0.0083

SSE 0.0027 0.0036 0.0030 0.0028 0.0029

ESE 0.0026 0.0029 0.0028 0.0028 0.0026

GMSE 0.0018

50% BIAS -0.0482 -0.0425 -0.0364 -0.0306 -0.0242

SSE 0.0041 0.0045 0.0045 0.0044 0.0040

ESE 0.0043 0.0044 0.0044 0.0045 0.0043

GMSE 0.0153

70% BIAS -0.0803 -0.0696 -0.0597 -0.0499 -0.0401

SSE 0.0053 0.0065 0.0059 0.0058 0.0051

ESE 0.0054 0.0058 0.0056 0.0057 0.0054

GMSE 0.0414

Note: “CR” denotes censoring rate.

6,180 in the second wave, 9,289 in the third wave, 7,376 in the fourth wave,
and 9,074 in the fifth wave. Waves six and seven, consisting of 1,360 and 1,124
newly-added interviewees respectively, were not included due to their signifi-
cantly smaller sample sizes. Moreover, wave six involved a high proportion of
missing data and wave seven was interviewed only once, making both subsets
inappropriate for this analysis. Datasets from each interview wave were treated
as natural subsets for use of our proposed DAC estimation.

Since the survey required all participating seniors to be 65 years or older,
survival time was defined as the age at death in years in excess of 65. Age at
death was calculated as the difference between the validated birth year and month
and the reported death year and month, so that the age calculation was accurate
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TABLE 6: Comparison of computational time to obtain parameter estimates from the proposed DAC approach and full
data-based evaluation

p=50 p=100 p=200

N DAC Full Relative DAC Full Relative DAC Full Relative

100000 0.554 0.753 1.360 0.905 1.410 1.557 1.884 4.216 2.237

200000 0.629 1.177 1.870 1.091 2.552 2.340 2.275 8.121 3.570

500000 0.913 2.333 2.556 1.604 6.242 3.891 3.432 19.794 5.768

1000000 1.396 4.289 3.072 2.650 12.083 4.559 5.633 39.368 6.989

2000000 2.533 8.607 3.398 4.971 24.308 4.890 10.630 79.296 7.459

Note: Average run time in seconds based on 10 replications as single-core jobs. Additional settings: σ = 0.5, ρ = 0.5,

and censoring rate 20%. Relative = run timeFull/run timeDAC.

to months. For the study subjects who died between two interview periods but
whose exact death times were unknown, the midpoint between the previous in-
terview date and the current interview date was interpolated to be the surrogate
death time. The date of the final interview conducted for each wave was taken
to be the censoring times for subjects in that wave who were lost to follow-up
during the current set of interviews. In other words, the censoring indicator was 1
when the individual died and 0 when the individual was known to be alive during
the last interview session but the current survival status was unknown. In total,
25,274 subjects died and 15,256 were censored, yielding an observed censoring
rate 37.64%.

Poston & Min (Yi et al., 2008, Chapter 7) fitted a Cox proportional hazards
model to the 1998–2000 CLHLS dataset and concluded that sociodemographic
characteristics such as age, gender and marital status were strong predictors of
the hazard of death. For our analysis, we selected 43 covariates from survey
sections including Basic Information, Lifestyle, Katz Activities of Daily Living
(ADL), Personal Background, and Objective Examination and Illnesses. Under
Basic Information, we chose gender, ethnic group (Han/other), place born (ru-
ral/urban), residence (rural/urban), co-residence (family/nursing home/alone),
and number of household members if residing with family. For Lifestyle, per-
sonal living habits chosen included main food (rice/other), fresh fruit/vegetables
intake, physical labour, as well as personal habits such as smoking, drinking and
exercising. Furthermore, from a list of daily activities, we selected housework,
play cards/mahjong, and watch TV/listen to radio as these are more representa-
tive and applicable to the majority of the Chinese population. Katz ADL criteria
included whether or not an individual received assistance with bathing, dressing,
toilet, transfer, continence, and feeding. We also added three covariates from
Personal Background, if an individual received adequate medical service when
sick at present, 80 years old, and 60 years old. Since the survey covered the
most elderly segment of the Chinese population, the majority (up to 70%) of
those surveyed were widowed and thus marital status could potentially serve as a
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confounder that masks the true relationship between the survival time and other
covariates such as gender. Lastly, from Objective Examination and Illnesses, we
chose two sets of covariates: the number of times a subject had experienced seri-
ous illness in the past two years and if currently suffering from hypertension, di-
abetes, heart disease, stroke, cerebrovacular disease, bronchitis, pulmonary em-
physema, asthma, pneumonia, pulmonary tuberculosis, cataract, glaucoma, can-
cer, gastric or duodenal ulcer, Parkinson’s disease and bedsores. Prostate cancer
was excluded as it only applies to male subjects, and many subjects indicated the
value of that particular covariate was unknown or missing.

The proportional hazards test (Grambsch & Therneau, 1994) for subset 1
yielded a p-value < 2× 10−16, indicating that the Cox model is not an appro-
priate fit. Moreover, Figure 1 shows the residuals from fitting an AFT model to
subset 1; they appear to be randomly scattered around zero, indicating that the
AFT assumption is reasonable. Thus, we chose to fit the AFT model to the data,
using our proposed DAC method to estimate the model parameters, with five
subsets consisting of the five remaining waves. Out of 43 preselected covariates,
the proposed model identified 10 nonzero predictors: 1) suffering from diabetes,
2) stroke, cerebrovascular disease, 3) hypertension, 4) cancer, 5) received assis-
tance during bathing, 6) being male, 7) did housework, 8) watching TV/listening
to radio, 9) playing cards/mahjong, and 10) being a smoker. Here, we utilized the
bootstrap method with 500 repetitions to estimate the standard errors of the var-
ious parameter estimates. At the 95% confidence level, except for the covariate
suffering from cancer, the remaining nine covariates are significant. Detailed re-
sults are summarized in Table 7. A possible explanation for the apparent absence
of an association between the covariate suffering from cancer and study subject
mortality could be the recent advances in medicine and cancer treatment that
significantly prolonged patient survival and hence reduced study subject mortal-
ity among individuals identified as suffering from cancer. In particular, some of
the less severe cancers are curable if they are diagnosed early enough, such as
breast cancer, stomach cancer, and nasopharyngeal carcinoma. Hence depending
on the stage and type of cancer, this particular explanatory variate may repre-
sent a lesser threat to the continued survival of an individual compared to other
chronic illnesses. Figure 2 shows the Kaplan–Meier survival curves derived from
different groups for nine covariates based on subset 1, which has the largest sam-
ple size; corresponding plots based on other subsets have a similar appearance,
and thus are not shown. Like other results that we have observed after fitting an
AFT model with aLASSO penalization using the DAC algorithm, we can eas-
ily observe that apart from the covariate that distinguishes a study subject who
receives assistance for bathing, all the other covariates are negatively associated
with subject survival. Receiving assistance during bathing could reduce the risk
of accidents for elders, and hence be associated with reduced overall mortality.
Although moderate physical and mental activities could be beneficial for main-
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taining a healthy brain and body, heavy labour such as doing housework and
excessive sedentary entertainment could impose stress and cause harm. For in-
stance, prolonged sitting from playing cards/mahjong and watching TV/listening
to radio, as well as heavy lifting from household chores could adversely affect
the spine and joints.

TABLE 7: Estimation results of the AFT model fitted to CLHLS Data using the proposed DAC approach

Variable β̂ ESE p-value

Suffer from diabetes (yes = 1, no = 0) -0.1715 0.0291 3.8432e-09

Gender (male = 1, female =0) -0.1142 0.0055 2.5515e-95

Suffer from stroke, cerebrovascular disease (yes = 1, no = 0) -0.1093 0.0134 4.2380e-16

Do housework (yes = 1, no = 0) -0.1023 0.0053 1.7787e-83

Suffer from cancer (yes = 1, no = 0) -0.0750 0.0656 2.5318e-01

Bathing Assistance (receives assistance = 1, otherwise = 0) 0.0705 0.0055 1.0506e-37

Watch TV/listen to radio (yes = 0, no = 0) -0.0600 0.0054 3.2242e-28

Suffer from hypertension (yes = 1, no = 0) -0.0550 0.0091 1.5942e-09

Play cards/mahjong (yes = 1, no = 0) -0.0549 0.0123 7.9645e-06

Smoker (yes = 1, no = 0) -0.0451 0.0142 1.5270e-03

Note: Standard errors are estimated using the bootstrap method with 500 replications.

6. CONCLUDING REMARKS

To deal with massive survival data, we have proposed a novel DAC method of
estimating an accelerated failure time model. This method involves constructing
an approximate WLS loss function, thereby efficiently reducing the dimension
of the estimation problem. A remarkable advantage of this approach is that the
penalized estimation procedure is implemented only once, while the standard
DAC approach to the same estimation problem requires the penalized estima-
tion procedure to run K times, seeking an optimal tuning parameter λ for each
subset, where K is the number of subsets. The DAC estimator that we have de-
rived possesses the oracle property. Our simulation studies demonstrate that our
proposed DAC approach is able to correctly identify important and unimportant
predictors; in addition, our method of estimation achieves a level of accuracy and
efficiency that is comparable to the accuracy and efficiency of the full sample-
based estimator as expected, suggesting that our DAC method of estimating an
accelerated failure time model also may have potential applicability in massive
data analytics.

Note that the condition concerning K identified in Section 2.3 is crucial with
respect to the large-sample properties of the DAC estimators. While many other
published methods require K = o(n1/2) – for example, see Tang et al. (2020),
Chen & Zhou (2020), Volgushev et al. (2019), and Wang et al. (2019) – we
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FIGURE 1: Residuals plot for checking AFT assumption based on subset 1.

only need K = O(nα) with 0 ≤ α < 1. The reason is that the Taylor expansion
of `n(β) in Equation (5) is not an approximation but an equality. However, in
the abovementioned literature, various approximations are used to construct the
DAC estimators, so they need strong conditions to obtain the expected theoretical
properties. For example, in Wang et al. (2019) who studied the Cox model, the
condition concerning K is K = o(n1/2). They proved

β̃Ik,lin − β̃Ik = O((n∗)−1) = o(n−1/2),

where β̃Ik is obtained from the likelihood function and β̃Ik,lin via a Taylor
approximation of the likelihood function. Therefore, Wang et al. (2019) need
this condition to ensure β̃Ik,lin − β̃Ik = o(n−1/2), while β̃Ik,lin − β̃Ik = 0 in our
method of estimation so that the condition on K is weaker.

Recall that β̃DAC is defined as

β̃DAC = K−1
K∑
k=1

β̃Ik = K−1
K∑
k=1

Σ̂
−1
Ik

n∗∑
i=1

ωIk,iY Ik,(i)XIk,(i).
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FIGURE 2: Kaplan-Meier curves of survival functions based on subset 1. Blue lines represent the corre-
sponding covariate values = 1, while red lines represent the corresponding covariate values = 0. Years is

the actual age of individuals minus 65.

Here we need to compute Σ̂
−1
Ik for each Dk, k = 1, . . . , K. According to one

referee’s suggestion, all Σ̂
−1
Ik (k = 1, . . . , K) are replaced by Σ̂

−1
DAC, where

Σ̂DAC = K−1
∑K

k=1 Σ̂Ik . Then β̃
New

DAC is defined as

β̃
New

DAC = Σ̂
−1
DACK

−1
K∑
k=1

n∗∑
i=1

ωIk,iY Ik,(i)XIk,(i).
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By the definition of β̃DAC and β̃
New

DAC, we have

β̃DAC − β̃
New

DAC = K−1
K∑
k=1

(Σ̂
−1
Ik − Σ̂

−1
DAC)

n∗∑
i=1

ωIk,iY Ik,(i)XIk,(i).

By Lemma A.1, which we state and prove in the Appendix, we know that
Σ̂Ik

P−→ Σ0, Σ̂DAC
P−→ Σ0, and so

β̃DAC − β̃
New

DAC
P−→ 0.

While Lemma A.2 – again, see Appendix – plays a key role in the proofs
of Theorems 1–2, the expression of Equation (1) that appears in the proof of
Lemma A.2 can be simplified via this new construction, thereby reducing the
complexity of our proofs of the theoretical results. In theory, the alternative es-
timator β̃

New

DAC would yield comparable statistical performance as well as reduce
computational time since it eliminates matrix inversion Σ̂

−1
Ik for each subset Dk.

We conducted simulation studies for p = (50, 100, 200), n = (105, 2× 105, 5×
105, 106, 2× 106) with σ = 0.5, ρ = 0.5,β = (0.8, 0.7, 0.6, 0.5, 0.4,0>p−5), and
censoring rate 20%. Both methods consumed nearly equal amounts of comput-
ing time with practically no difference. Furthermore, simulations show that for
p = 50, 200, both methods yielded similar bias values for the bias and sample
standard error based on 500 Monte Carlo replications.

Note that the weighted least squares method of estimating the AFT model
(Suite, 1993, 1996) requires the condition that T and C are independent, which
may not hold in certain circumstances. To relax this condition, we can employ
the local Kaplan–Meier estimator (Dabrowska, 1989; Wang & Wang, 2009) to
construct local weights instead of the Kaplan–Meier weights in Equation (1).
Furthermore, future research could consider massive interval-censored survival
data. In the CLHLS dataset, for participants who died between two interview
sessions but whose exact time of death was not recorded, the midpoint between
the two interview sessions was used as a surrogate death time. Hence, extend-
ing the current DAC approach to include the possibility of interval censoring is
warranted.
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APPENDIX

We first state several lemmas.

Lemma A.1. Suppose that Assumptions (A1) and (A2) hold. Then, for k =

1, . . . , K, we have Σ̂Ik
P−→ Σ0 and Σ̂DAC

P−→ Σ0.

The first result appears in Stute (1993) and the second result is directly de-
duced by noting that Σ̂DAC = K−1

∑K
k=1 Σ̂Ik .

Lemma A.2. Suppose that Assumptions (A1)–(A5) hold. Then we have

√
n(β̃DAC − β0)

d−→ N(0,Σ−10 ΣWΣ−10 ),

where ΣW is defined in Theorem 2.

F i. rst, we consider the case with fixed K <∞. For all k = 1, . . . , K, Stute
(1996) proved that

√
n/K(β̃Ik − β0)

d−→ N(0,Σ−10 ΣWΣ−10 ). Note that β̃Ik

(k = 1, . . . , K) are mutually independent and β̃DAC = K−1
K∑
k=1

β̃Ik . Direct cal-

culations entail that
√
n(β̃DAC − β0)

d−→ N(0,Σ−10 ΣWΣ−10 ).

Next, we consider the case K →∞ as n→∞. For k = 1, . . . , K, let ωIk,i,
YIk,(i) andXIk,(i) represent ωi, Y(i) andX(i) for the kth datasetDk, respectively.
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Then β̃Ik − β0 can be written as

β̃Ik − β0 = Σ̂
−1
Ik

n∗∑
i=1

ωIk,iXIk,(i)(YIk,(i) −X
>
Ik,(i)β0) = Σ̂

−1
IkMIk . (1)

Stute (1996) stated that E(MIk) decreases to zero at any polynomial rate and

lim
n→∞

Var(
√
n∗MIk) = ΣW .

Further, we can obtain E(MIk) = o(n−1/2). SinceMIk(k = 1, . . . , K) are mu-
tually independent, it follows from the Central Limit Theorem that

√
n

1

K

K∑
k=1

Σ−10 MIk
d−→ N(0,Σ−10 ΣWΣ−10 ).

Coupled with Lemma 19.24 in van der Vaart (1998) and the fact Σ̂Ik
P−→ Σ0

stated in Lemma A.1 we have

√
n

1

K

K∑
k=1

Σ̂
−1
IkMIk

d−→ N(0,Σ−10 ΣWΣ−10 ). (2)

Combining (1), (2), and β̃DAC = K−1
K∑
k=1

β̃Ik , we have

√
n(β̃DAC − β0)

d−→ N(0,Σ−10 ΣWΣ−10 ).

Thus, the proof of Lemma A.2 is completed. �

Proof of Theorem 1. Note that Q†n(β) is a strictly convex function in β, thus
we only need to show that Q†n(β) has a

√
n-consistent local minimizer. By Fan

& Li (2001), we should verify that for any ε > 0, there exists a sufficiently large
constant C such that

P

{
inf

u∈Rp,‖u‖=C
Q†n(β0 + n−1/2u) > Q†n(β0)

}
≥ 1− ε, (3)

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



24 SU, YIN, ZHANG AND ZHAO Vol. xx, No. yy

where ‖ · ‖ is the Euclidean norm. Letu = (u0, u1, . . . , up)
>. For ‖u‖ = C, Tay-

lor’s expansion entails

n{Q†n(β0 + n−1/2u)−Q†n(β0)}

= −2u>Σ̂DAC{
√
n(β̃DAC − β0)}+ u>Σ̂DACu+ nλ

p∑
j=0

1

|β̃DAC,j|
(|β0j + n−1/2uj| − |β0j|)

≥ u>Σ̂DACu− 2‖u‖
∥∥∥Σ̂DAC

√
n(β̃DAC − β0)

∥∥∥+ nλ

d0∑
j=0

1

|β̃DAC,j|
(|β0j + n−1/2uj| − |β0j|)

≥ u>Σ̂DACu− 2‖u‖
∥∥∥Σ̂DAC

√
n(β̃DAC − β0)

∥∥∥− c1√nλ‖u‖
≥ u>Σ̂DACu− 2C

∥∥∥Σ̂DAC

√
n(β̃DAC − β0)

∥∥∥− c1√nλC
= η1 − η2 − η3,

where c1 is a positive constant. According to Lemma A.1, we obtain that
with probability converging to 1, η1 ≥ ρmin(Σ0)‖u‖22 > 1

2
ρmin(Σ0)C

2, where
ρmin(Σ0) > 0 is the minimal eigenvalue of Σ0. On the other hand, Lemma A.2
implies that ‖Σ̂DAC

√
n(β̃DAC − β0)‖ = OP (1). Thus we have η2 = OP (1)C.

As
√
nλ→ 0, we obtain that η3 = o(1)C. It is clear that for a sufficiently large

C, η1 dominates η2 and η3 with probability converging to 1, which implies that
Equation (3) holds. Thus β̂DAC − β0 = OP (n−1/2).

Proof of Theorem 2. We first prove the selection consistency of the proposed
estimator β̂DAC. If β̂DAC,j 6= 0 for some d0 < j ≤ p, then we have

√
n
∂Q†n(β)

∂βj

∣∣∣∣
β=β̂DAC

= 2Σ̂
(j)

DAC

√
n
(
β̂DAC − β̃DAC

)
+
√
nλ

sgn(β̂DAC,j)

|β̃DAC,j|
,

where Σ̂
(j)

DAC is the j-th row of Σ̂DAC. By Theorem 1 and Lemma A.2, we
have β̂DAC − β̃DAC = OP (n−1/2). Combined with Lemma A.1, it follows that

Σ̂
(j)

DAC

√
n
(
β̂DAC − β̃DAC

)
= OP (1). On the other hand, from nλ→∞ and the

fact β̃DAC − β0 = OP (n−1/2) as stated in Lemma A.2, we have

√
nλ

sgn(β̂DAC,j)

|β̃DAC,j|
=

nλ

|
√
nβ̃DAC,j|

sgn(β̂DAC,j)→∞

holds in probability. Therefore, with probability converging to 1,
√
n ∂Q†n(β)

∂βj

∣∣∣
β=β̂DAC

6= 0,which implies P
(
β̂DAC,j = 0

)
→ 1 for all d0 < j ≤ p.
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Thus, we complete the proof of the first part of Theorem 2.
Now we turn to show the asymptotic normality of β̂DAC. Let u =

(u0, u1, . . . , up)
> and Sn(u) = n{Q†n(β0 + n−1/2u)−Q†n(β0)}. By Taylor’s

expansion, we have

Sn(u) = −2u>Σ̂DAC{
√
n(β̃DAC − β0)}+ u>Σ̂DACu

+nλ

p∑
j=0

1

|β̃DAC,j|
(|β0j + n−1/2uj| − |β0j|).

It follows from Lemma A.1, Lemma A.2 and Slutsky’s theorem that

u>Σ̂DACu
P−→ u>Σ0u (4)

and

2u>Σ̂DAC{
√
n(β̃DAC − β0)}

d−→ 2u>W , (5)

whereW is defined in Theorem 2. If 0 ≤ j ≤ d0 (i.e., β0j 6= 0), by Lemma A.2,
we have

√
n(|β0j + n−1/2uj| − |β0j|)

|β̃DAC,j|
P−→ ujsgn(β0j),

which implies

nλ
|β0j + n−1/2uj| − |β0j|

|β̃DAC,j|
=
√
nλ

√
n(|β0j + n−1/2uj| − |β0j|)

|β̃DAC,j|
P−→ 0

using
√
nλ→ 0. Corresponding to β0 = (β>0,a,β

>
0,b)
>, we write u =

(u>a ,u
>
b )>. If d0 < j ≤ p, Lemma A.2 and the assumption nλ→∞ in the state-

ment of Theorem 2 imply that

nλ
|β0j + n−1/2uj| − |β0j|

|β̃DAC,j|
= nλ

|uj|
|
√
nβ̃DAC,j|

=

{
0, uj = 0,

+∞, uj 6= 0.

Therefore we conclude that

nλ

p∑
j=0

1

|β̃DAC,j|
(|β0j + n−1/2uj| − |β0j|) =

{
0, ub = 0,

+∞, otherwise.
(6)

Define

S(u) =

{
u>a Σ11ua − 2u>aW a, ub = 0,

+∞, otherwise,
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where W a is defined in Theorem 2. Using Equations (4)–(6) and Slutsky’s the-
orem, we have

Sn(u)
d−→ S(u).

Note that (Σ−111W a,0)> is the unique minimizer of S(u). By the argmax con-
tinuous mapping theorem (van der Vaart & Wellner, 1996), we conclude that

√
n(β̂DAC,a − β0,a)

d−→ Σ−111W a,

which completes the proof of the second part of Theorem 2.
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