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Abstract
The restless multi-armed bandit (RMAB) problem
is a generalization of the multi-armed bandit with
non-stationary rewards. Its optimal solution is in-
tractable due to exponentially large state and action
spaces with respect to the number of arms. Exist-
ing approximation approaches, e.g., Whittle’s in-
dex policy, have difficulty capturing either tempo-
ral or spatial factors such as impacts from other
arms. We propose considering both factors us-
ing the attention mechanism, which has achieved
great success in deep learning. Our state-aware
value function approximation solution comprises
an attention-based value function approximator and
a Bellman equation solver. The attention-based co-
ordination module capture both spatial and tem-
poral factors for arm coordination. The Bellman
equation solver utilizes the decoupling structure of
RMABs to acquire solutions with significantly re-
duced computation overheads. In particular, the
time complexity of our approximation is linear in
the number of arms. Finally, we illustrate the effec-
tiveness and investigate the properties of our pro-
posed method with numerical experiments.

1 Introduction
Restless multi-armed bandit (RMAB) [Whittle, 1988] prob-
lems are non-stationary extensions of the multi-armed bandit
(MAB) [Robbins, 1952] problem. Unlike the standard MAB,
the arms have non-stationary reward distributions. The ad-
ditional dynamics enable RMAB to model a broader range
of applications than MAB, including clinical trials, aircraft
surveillance, and worker scheduling [Whittle, 1988], as well
as modeling robotic coordination [Argand, 1998], machine
maintenance [Abad and Iyengar, 2015], recommendation sys-
tem [Meshram et al., 2017], multi-channel accessing [Liu and
Zhao, 2010], and network resource scheduling [Kadota et al.,
2018].

The dynamics of RMAB are specified by Markov chains
with rewards. Each arm’s state transits in either an active
or a passive mode defined by two different Markov chains.
Each time step, a controller can at most activate M out of
N arms and receive rewards depending on the current states

and actions. The goal of the controller is to find a control
policy to maximize the expected long-term rewards. Optimal
scheduling policy requires considering both impacts across
arms (spatial factors) and impacts of current action on future
rewards (temporal factors).

Solving an RMAB is computationally intractable due to
the exponential growth rate of the state and action spaces
with respect to the number of arms, which is known as the
curse of dimensionality. Papadimitriou and Tsitsiklis (1999)
showed that, even under deterministic transitions, finding the
optimal solution is PSPACE-hard. From a high-level perspec-
tive, coordinating the arms ideally should consider both spa-
tial and temporal factors. The combinatorial nature of huge
state-action space contributes to high spatial complexity, fur-
ther amplified by the sequential structure from a temporal per-
spective.

Approximate solutions for RMAB need to trade off op-
timality for efficiency by ignoring certain factors. The ap-
proaches can be generally categorized into index policies and
approximate dynamic programming. Index policies overlook
impacts across arms, while general approximate dynamic
programming is not sample efficient in capturing the temporal
relations.

Whittle (1988) proposed an index-based heuristic for
RMAB. In each time step, the controller selects the arms with
the top index values, which can be roughly interpreted as fu-
ture rewards. The index values are computed independently
for each arm. Although this makes index policy free of the
curse of dimensionality, impacts across arms are not well-
captured as the impact of state transitions of other arms are
overlooked. Although the index policy is optimal for the sta-
tionary MAB [Gittins, 1979], it is only asymptotically opti-
mal for RMAB in a limiting regime [Weber and Weiss, 1990]
where spatial impacts can be averaged out. Moreover, com-
putation of indexes is restricted to an indexability condition,
which is difficult to establish in general [Glazebrook et al.,
2005; Ouyang et al., 2015].

RMAB can be alternatively formulated as a large-scale
Markov decision process (MDP). Solving an MDP is not sub-
ject to the indexability restriction, but approximation qual-
ity is often compromised due to high computational costs
in capturing the temporal factors. The general approximate
dynamic programming framework [Bertsekas and Tsitsiklis,
1996] utilizes the state transitions as a simulator and approx-



imates the optimal solution through sampling from generated
state trajectories. It is shown that the general sample com-
plexity of this type of approach is exponential in the number
of arms [Lattimore et al., 2013].

In this work, we develop a method capturing both spatial
and temporal factors to solve RMAB in its MDP formula-
tion with linear complexity in the number of arms. We con-
sider approximating the joint value function through a lin-
ear combination of each arm’s value functions. We supply
our approximated value function to a greedy policy to ap-
proximate the optimal solution. We propose a state-adaptive
value-tuning mechanism to allow state-aware value function
approximation. The complicated spatial and temporal factors
in arm coordination are captured using the attention mech-
anism proposed in the Transformer model [Vaswani et al.,
2017]. We leverage the linear approximation form and the
decomposable structures in RMABs to achieve linear com-
plexity in computing the Bellman residual. These steps trans-
form solving an RMAB into training the weights in the Trans-
former. We use a stochastic gradient descent (SGD)-based
algorithm to train the weights, which is free of the curse of
dimensionality.

The contributions of our approach are as follows.

1. Our method demonstrates a way of using the attention
mechanism for capturing coupling factors in large-scale
coupled systems such as RMABs.

2. We adopt SGD to Bellman residual minimization to ac-
quire optimal value approximations. Our algorithm cir-
cumvents the curse of dimensionality faced by brute-
force dynamic programming.

3. We validate the effectiveness and linear complexity of
our approach for solving RMABs through experiments.

2 Related Works
Most works in RMAB focus on index-based policies, in-
cluding index policies for different setups [Abad and Iyen-
gar, 2015; Meshram et al., 2017; Kadota et al., 2018], opti-
mality conditions of index policies [Weber and Weiss, 1990;
Liu and Zhao, 2010], and regret bounds of learning indices
for unknown models [Tekin and Liu, 2012; Jung and Tewari,
2019]. Very few works studied other approximations of
RMAB solution [Guha et al., 2010].

Linear value function approximation has been studied
for factored MDP [Guestrin et al., 2003], weakly coupled
MDP [Meuleau et al., 1998], and, more recently, multi-agent
reinforcement learning [Sunehag et al., 2018], focusing on
decentralized coordination. Factored MDP is suitable for
this form due to its decomposable structure described by a
dynamic Bayesian network. However, this approximation
form is imposed globally and is not adapted to local states.
Meuleau et al. (1998) suggested a domain-specific heuristic
to address local adaption. Our work considers a general state-
dependent adaption mechanism that goes beyond the domain-
specificity.

The self-attention mechanism is the backbone of the Trans-
former model, which has achieved remarkable successes in
natural language processing [Vaswani et al., 2017], and re-

cently, computer vision tasks [Dosovitskiy et al., 2021]. Re-
cent works have applied attention mechanisms in multi-agent
reinforcement learning to improve learning efficiency [Jiang
and Lu, 2018]. The approaches in multi-agent reinforcement
learning focus on decentralized decision making without a
centralized coordinator. However, we consider a centralized
scheduling setup.

3 Problem Setup
We specify the restless multi-armed bandit (RMAB) problem
and relevant notations in this section.

3.1 RMAB
RMAB is related to scheduling multiple Markov decision
processes (MDPs). An MDP {S,A, P,R} includes a state
space S, an action space A, a state transition law spec-
ified by a conditional probability distribution P (s′|s, a)
with s, s′ ∈ S, a ∈ A, and a per-stage reward func-
tion R(s, a). We consider maximizing the discounted
cumulative reward over an infinite horizon criterion as
max{a(k)} E[

∑∞
k=0 γ

kR(s(k), a(k))], where 0 < γ < 1 is
a discount factor and the superscript k is the time step.

An RMAB with N arms consists of N heterogeneous
MDPs {Si,Ai, Pi, Ri} for all i = 1, . . . , N . Without loss
of generality, we assume that Ri(·, ·) ≥ 0 and |Si| = S for
all i. Every arm has a binary action space Ai = {0, 1} with
ai = 0 and 1 for a passive and an active transition mode,
respectively. One needs to maximize the cumulative indi-
vidual long-term rewards E[

∑∞
k=0

∑N
i=1 γ

kR
(k)
i (s

(k)
i , a

(k)
i )]

by finding a sequence of collective actions {a(k)}∞k=0 with
a(k) = [a

(k)
1 , . . . , a

(k)
N ] subject to a cardinality constraint∑N

i=1 a
(k)
i ≤ M for all k. An RMAB can be viewed as a

combined MDP. The cardinality constraint couples the arms
by restricting the action space of the corresponding MDP of
the RMAB.

3.2 Value Functions and Q-Factor
Let the vectors s and a denote the aggregated state
[s1, . . . , sN ] and action [a1, . . . , aN ], respectively. A value
function refers to any real-valued function on a state space.
It can be interpreted as the estimated future rewards for each
state. Given a value function V , we define a Q-factor,

Q(s, a) := R(s, a) + γEP (s′|s,a)[V (s′)], (1)

where EP (x)[f(x)] :=
∫
f(x)P (dx) denotes the expecta-

tion of f(x) under the probability measure P . The Q-factor
is the estimated future rewards under action a. An optimal
value function V ?(s) defines the maximal achievable future
rewards for each state under an optimal policy. It satisfies the
Bellman optimality equation,

V ?(s) = max
a

Q?(s, a), (2)

where Q? := R(s, a) + γEP (s′|s,a)[V
?(s′)]. The optimal

value functions of each arm and the RMAB are V ?i (si) and
V ?(s), respectively.



3.3 Value-Based Policy
Given a value function V (s), we can produce a greedy control
policy for the value function by

a = π(s) = argmax
u∈A

Q(s, u). (3)

If V = V ?, the greedy policy π is optimal. One can approx-
imate an optimal policy by approximating V ?. Let V π de-
note the actual reward under π. There is a strict performance
bound for this approach [Williams and Baird, 1993],

‖V ? − V π‖∞︸ ︷︷ ︸
performance gap of greedy policy π

≤ 1

1− γ
‖maxQ− V ‖∞︸ ︷︷ ︸

Bellman residual

. (4)

4 Our Approach
We approximate the optimal solution of RMAB through a
value-based policy. Our proposed value function is developed
upon the following general form, where it is approximated as
the summation of each arm’s value functions

V (s(k)) =

N∑
i=1

Vi(s
(k)
i ). (5)

A straightforward approach of acquiring Vi is to minimize
the Bellman residual in (4). However, Vi is restricted to every
single arm, which ignores the non-stationary impacts from
other arms. Contrarily, Vi should adapt to the changes of
other arms’ states.

To promote state-awareness, we propose a state-dependent
value-tuning method to adjust Vi based on the global state
s(k). In particular, we consider the arm value function in the
following form

Vi(s
(k)
i ) := V wi (si|s(k)) = wi(si|s(k))V ?i (si). (6)

To capture cross-arm spatial impacts, we let the weights wi
to be dependent on the global state. Our approximation (6)
allows the arm value functions to adapt to the changes in the
states of other arms, even when si remains the same. And
the weights will be trained to best-estimate future rewards,
which seizes the temporal impacts. Thus, the representation
power of our approximation is significantly stronger than the
ordinary approximation (5).

The advantages of our approximation form are two-fold.
Interpretability. The weights wi demonstrate the impor-
tance of other states given the current state s(k). Flexibility.
As wi(·|s(k)) is determined by s(k), we are allowed to have
distinct value approximations V (s(k)) =

∑N
i=1 V

w
i (si|s(k))

for different s(k).

4.1 System Outline
We adopt the attention mechanism to represent the state-
adaptive weights and solve the network weights by a Bellman
equation solver. The architecture of our approach is shown
in Figure 1. The diagram consists of the attention-based ap-
proximator and a Bellman equation solver. The approxima-
tor generates re-weighted future rewards for each arm. The
solver utilizes the decoupling structure in RMAB to generate
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Figure 1. Attention-based linear value function approximation.

scheduling decisions and back-propagates gradient informa-
tion from Bellman residual for steering the approximator to
satisfy the Bellman optimality equation.

Let s(k) := [s
(k)
1 , . . . , s

(k)
N ] be the state whose value we aim

to approximate at time k. The approximator extracts weights
wi(si|s(k)) for all si ∈ Si for i = 1, . . . , N . We then cal-
culate Q-factors of each arm based on arms’ reweighed value
functions by

Qwi (si, ai) = Ri(si, ai) + γ
∑
s′i

Pi(s
′
i|si, ai)V wi (si).

We compute the approximate optimal action a(k) by solving

max
a

Qw(s(k), a) :=
∑
i

Qwi (s
(k)
i , ai), (7a)

subject to
∑
i

ai ≤M, (7b)

through a quick-max algorithm discussed later. To learn the
weights in the attention module, we propose to minimize the
corresponding square of the Bellman residual for s(k)

B(s(k)) :=
[ N∑
i=1

V wi (s
(k)
i )−Qwi (s

(k)
i , a

(k)
i )
]2
. (8)

We now proceed to explain how each operation works.

4.2 Attention-Based Approximator
We aim to solve RMABs with state-adaptive coordination of
all arms. For the value-based approximation strategy, the
scheduling decision is determined by the arms’ value func-
tion. This module is responsible for adjusting the arms’ value
functions and coordinating the arms to achieve larger cumu-
lative rewards. In particular, this is done by generating dis-
counting weights wi(si|s(k)) to adjust the overestimated cu-
mulative rewards V ?i (si) for each arm.

Attention mechanism has demonstrated representational
power in extracting both temporal and spatial information



and has achieved remarkable success in both natural language
processing and image recognition. We use the Transformer
encoder [Vaswani et al., 2017] to extract state-aware infor-
mation for multi-arm coordination. Coordinating multi-arms
requires considering both spatial (cross-arm impact) and tem-
poral (impact on future rewards) factors. This module in-
takes the arms’ optimal Q-factors for the current state, i.e.,
Q?i (s

(k)
i , a) with a = 0, 1 for every arm i. Through scaled-

product attention, spatial influences among the arms are cap-
tured. We then pass the extracted spatial and temporal infor-
mation to the arms’ value functions V ?i to adjust the expected
future rewards for each arm.

Recall that the cardinality constraint in RMAB restricts the
flexibility of the arms’ actions during coordination. Con-
sequently, the sum of the arms’ optimal value functions
is an upper bound for all achievable value functions, i.e.,∑
i V

?
i (si) ≥ V (s). Thus, it is necessary to ensure that

the weights wi(·|s(k)) are indeed discounting the optimal
value functions for each arm. Recall that we assume non-
negative rewards, which ensures that all value functions are
nonnegative as well.1 Therefore, it suffices to ensure that
0 ≤ wi ≤ 1, which is done by applying the sigmoid function
σ(x) = 1

1+exp(−x) to the output of the Transformer encoder.

Bellman Equation Solver
For value-based policy, we need to evaluate the Q-factor for
computing greedy actions as prescribed by the value-based
approach in (1) and (3). The maximum value is further used
to produce losses for solving the Bellman optimality equa-
tion. However, direct computation of the Q-factor involves
the combined P andR, which leads to exponential time com-
plexity inN , and the maximization is combinatorial inN and
M . We address the first issue using a value decomposition
and the second one using a quick-max approximation algo-
rithm. As a result, both computing the Q-factor and the max-
imization can be done with linear time complexity in N . The
complexity reduction techniques are developed based on the
linear approximation form (5) and independent of the state-
adaptive weights w. In this subsection, we drop the related
superscript w to simplify notations.

4.3 Value decomposition
We need to evaluate Q(s, a) = R(s, a) +
γ
∑
s′ P (s

′|s, a)V (s′). For a fixed a, the size of the
reward function R(s, a), transition matrix P (s′|s, a), and
value function V (s) are exponential in N . We find that
the exponential complexity can be reduced to a linear one
through a following decomposition.

Note that, under the linear approximation (5), there holds

Es′∼P (s|s,a)[V (s′)] =Es′∼P (s|s,a)[
∑
i

Vi(s
′
i)]

=
∑
i

Es′∼P (s|s,a)[Vi(s
′
i)]

=
∑
i

Es′i∼Pi(s′i|si,ai)[Vi(s
′
i)].

1The nonnegativity can be ensured by re-defining R̃i(si, ai) =
Ri(si, ai)−minsi,ai Ri(si, ai).

Plug this into Q(s, a), we can obtain

Q(s, a) =

N∑
i=1

Ri(si, ai) + γEs′∼P (s|s,a)[V (s′)]

=

N∑
i=1

Ri(si, ai) + γEs′i∼Pi(s′i|si,ai)[Vi(s
′
i)]

=

N∑
i=1

Qi(si, ai),

The result is straightforward as it says that the joint Q-
factor can be obtained by summing the individual Q-factors
under a linear approximation (5). This shows the compati-
bility of linear approximation for the independent transitions
and rewards of RMAB. As a result, the time complexity of
computing the Q-factor is now linear in N .

Contrarily, if one considers a general value function ap-
proximation such as a multi-layer neural network, decompos-
ing the Q-factor is infeasible. This yields the curse of dimen-
sionality if one wants to compute Q(s, a) as the combined P
and R are involved.

Quick maximization
A key step in evaluating the Bellman optimality operator is
to solve the combinatorial optimization in (7). Enumerating
all
∑M
k=0

(
N
k

)
feasible actions yields exponential complexity.

We overcome this issue by applying a quick-max algorithm,
which sequentially determines ai with a local greedy decision
under the global constraint

∑N
i=1 ai ≤ M in a fixed order.

The pseudo code of the algorithm is in the Appendix for ref-
erence. The corresponding time complexity of quick-max is
at most O(N).

As a side note, the quick-max algorithm is a greedy ap-
proximation for the actual maximization problem. Neverthe-
less, optimality can still be reserved as the value functions
are adjusted to accommodate this factor through the learning
procedure.

4.4 Training the Approximator
We use the square of the Bellman residual as the loss function
for the attention-based approximator to adjust its weights.
Recall that we assume |Si| = S for all arms. There are
SN values to be approximated for V (s). Consequently, the
Bellman optimality equation (2) involves SN separate equa-
tions. To promote scalability, we train the approximator us-
ing a mini-batch SGD training approach. That is, we sample
a mini-batch of states in each iteration, compute the approx-
imated Q-factors and the corresponding maximizers a, and
update the Transformer encoder based on the square Bellman
residuals in the mini-batch.

The curse of dimensionality caused by solving the com-
bined MDP with exponentially increasing state and action
spaces is now alleviated by learning the coordination weights
in the Transformer encoder. By training with SGD, we let the
Transformer acquire the weights from sampled states. As the
optimal value function is determined by state transitions and
rewards with a total degree of freedom linear in N , we can
expect that the total sample complexity is at most polynomial



in N . In the experiments section, we verify the effectiveness
of the mini-batch training approach.

4.5 Time Complexity and Error Analysis
The time complexity of solving an RMAB relies on both the
approximator and the Bellman equation solver. The approx-
imator module consists of a Transformer encoder network,
a sigmoid function, and an elementwise product. Since all
these sub-modules allow parallel computation, the time com-
plexity of the coordinator module is independent of N . As
for the Bellman equation solver, linear time complexity in N
is ensured by the value decomposition and the quick-max al-
gorithm. Note that the linear time complexity is the same as
computing Whittle indices. The advantage of our approach
is that we can capture cross-arm impacts, which is ignored
when computing the indices.

The accuracy of a general numeric method involving sam-
pling is affected by three factors: 1) approximation error due
to modeling effects, 2) optimization error due to accuracy of
the optimization solver, and 3) estimation error due to random
sampling. By using the state-adaptive tuning mechanism, our
model can capture any achievable value function, which leads
to zero approximation error. Although an overparameterized
neural network theoretically can reduce the optimziaiton er-
ror to zero [Allen-Zhu et al., 2019], for any finite training
epochs in practice, zero error is not achievable. The estima-
tion error depends on the sample collection. Ideally, sampling
the full state space reduces the error to be zero. This is not
scalable due to the exponential complexity in the state space.
We adopt SGD-based training to trade-off estimation error for
scalability.

5 Numerical Results
We study the effectiveness of our approach for RMABs with
N arms under a per-time activation constraint

∑N
i=1 a

(k)
i ≤

M . We compare the performance with Whittle’s index pol-
icy [Whittle, 1988] and a myopic policy. We run ablation ex-
periments to study the effectiveness of our proposed modules.
Finally, we study the practicality of our approach through ex-
periments on hyperparameter sensitivity and scalability. De-
tails of experiment environments are in the appendix.

5.1 Performance Comparison
Control policies. We compare our approach with myopic
policy and Whittle’s index policy. The myopic policy chooses
the action that maximizes the per-stage reward of all arms.
We use the quick-max algorithm to approximate maximiza-
tion steps to ensure scalability.
Arm dynamics and rewards. We set discount factor γ =
0.9 and S = 10 for all arms. We consider two kinds of
arms (indexable and nonindexable) defined by a parameter-
ized restart process. In particular, the arm dynamics is de-
scribed by a controlled restart process [Akbarzadeh and Ma-
hajan, 2019] with passive and active transition respectively
being

Pi(s
′
i|si, 0) =

{
pi, s′i = si,

(1− pi)/(S − 1), s′i 6= si,

and Pi(s′i = 0|si, 1) = 1. To accommodate our positive re-
wards assumption, we set the reward function as Ri(si, 0) =
(S − 1)2 − (si − 1)2, and R(si, 1) = 0. For all experi-
ments, we generate arms with randomly chosen pi. Accord-
ing to [Akbarzadeh and Mahajan, 2019], the arms are index-
able if pi ∈ Uniform[1/(S − 1), 1]. We consider both index-
able and nonindexable arms with pi ∈ Uniform[1/(S−1), 1]
and pi ∼ Uniform[0, 1/(S − 1)), respectively.
Computation of the index values. Recall from [Whittle,
1988] that an index λ for state si is defined by

Q?i (si, 1;λ) = Q?i (si, 0;λ), (9)
where

Q?i (si, ai;λ) := max
{a(k)

i }∞k=1

E
{ ∞∑
k=0

γk[ri(s
(k)
i , a

(k)
i )−

λ · a(k)i ]
∣∣∣(s(0)i , a

(0)
i ) = (si, ai)

}
.

We use a binary search to find each λ by solving (9), which
does not require the indexability condition. The obtained
value is not necessarily an index if the indexability cannot
be verified. Nevertheless, the quantity still reflects the rel-
ative advantage of being active over passive for the current
arm and is thus an indicator for arm importance, which can
be used for an index policy.
Hyperparameters. We use a one-layer transformer en-
coder with hidden dimension 512 and 8 heads. The mini-
batch size is set as 128 with 100 training epochs. The opti-
mizer is chosen as the Adam with a 0.001 learning rate.
Metrics. We use the empirical cumulative rewards as the
metrics for performance comparison and ablations study. For
hyperparameter sensitivity and scalability study, we choose
the square Bellman residual as the metric. We refer to it as
the pseudo Bellman residual as only a subset of the states is
used to compute.
Results. We simulate RMAB with three policies with both
indexable and non-indexable arms. We consider three cases:
N = 10 with M = 3, N = 20 with M = 6, and N = 50
withM = 15. For each case, every policy is simulated with a
fixed but randomly generated 500 initial states. Table 1 shows
the mean (and standard deviations in the bracket) of cumula-
tive rewards for each policy in the first 50 time epochs. Index
policy shows an advantage over the myopic policy for index-
able arms, while our approach achieves the best performance
among the three.

5.2 Ablation Study
We compare our proposed approach with the following cases
to show the importance of our proposed submodules:
• -approximator: we remove the attention-based approxi-

mator and directly solve the Bellman residual minimiza-
tion, minV ‖V −maxaQ‖2. Note that this is equivalent
to finding optimal static weights to adjust the arm value
function;
• -Transformer+MLP: we replace the Transformer with a

multi-layer perception, which comprises two hidden lay-
ers and the same total number of neurons as the Trans-
former;



indexable

N 10 20 50

myopic 7040.7(270.0) 13934.1(453.2) 34976.7(674.0)
index 7072.5(83.5) 14000.1(117.9) 35209.5(184.0)
ours 7476.6(147.9) 14899.9(223.4) 37262.1(326.0)

nonindexable

N 10 20 50

myopic 6935.2(197.3) 13719.5(316.1) 34491.0(457.3)
index 6980.6(87.0) 13799.0(123.1) 34736.8(190.4)
ours 7233.6(158.8) 14404.5(231.6) 36090.7(362.9)

Table 1. Cumulative rewards for different policies.

method
cumulative rewards

mean (std. deviation)

ours 9382.1(256.1)
-approximator 4743.5(464.3)
-Transformer+MLP 8578.1(373.4)
-sigmoid 6412.1(411.2)

Table 2. Ablation study for different modules.

• -sigmoid: we keep the Transformer, but remove the sig-
moid function on the output.

We test the above methods with N = 10, M = 4 for ran-
domly generated nonindexable arms. We compare different
approaches by following the same simulation setup as before.
Table 2 shows the mean and the standard deviation of the cu-
mulative rewards with 500 initial states for different cases.
Our method outperforms other variants, which shows that all
considered submodules contribute to performance improve-
ments. Moreover, in the case without using the sigmoid func-
tion, both the mean and variation of accumulative rewards
reward and variation degrade significantly, which indicates
that discounting the future reward for each arm is critical for
obtaining a better value function estimation.

5.3 Hyperparameter Sensitivity and Scalability
The major hyperparameters that potentially affect the perfor-
mance of our approach include the mini-batch size, training
epochs, and the hidden dimension of the transformer encoder.
The mini-batch size and epoch numbers affect the training
process while the hidden dimension affects the learning ca-
pacity of the model. We examine these factors by comparing
the obtained pseudo Bellman residuals under N = 10 with
M = 5. Relevant results are presented in Figure 2 and 3 with
error bars indicating the means and standard deviations. Fig-
ure 2 shows that the Bellman residual converges quite fast and
the large size of the mini-batch is critical to achieving a small
residual. The left of Figure 3 shows that larger N requires a
higher hidden dimension (more neurons) to learn the coordi-
nation. Moreover, larger mini-batch and hidden dimensions
will hurt residual but saturate once they are large enough.

Scalability with respect to N is critical for solving
RMABs. We have shown that our method yield liner time
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Figure 3. (Left) sensitivity in the size of the hidden dimension;
(right) linear time complexity in N using our approach.

complexity. We now illustrate this through experiments. We
solve RMAB with varyingN with iteration epochs fixed to be
100 and 128 samples per epoch. We record the time of each
instance. The time spent for solving each tested instance is
shown in the right Figure 3. The time complexity increases
linearly with respect to N and is not affected by S, the num-
ber of states in each arm.

6 Conclusions
We have proposed a novel approach for solving RMAB be-
yond the Whittle’s index policy and the classic approxi-
mate dynamic programming. Our method combines a state-
adaptive linear value function approximator and a Bellman
equation solver to solve the combined MDP of the RMAB.
The adaptation is realized by adopting the attention mech-
anism, which captures the complicated multi-arm coordina-
tion involving both spatial and temporal factors for multi-arm
coordination. Directly solving the combined MDP is compu-
tationally intractable due to curse of dimensionality. By using
the state-adaptive approximation, the difficulty is transferred
to training a neural network, which can be done efficiently us-
ing SGD-based mini-batch training. Our result indicates that
significant efficiency can be gained with little loss in accu-
racy for solving weakly coupled systems. We hope that the
ideas can be extended to problems with similar weak cou-
pling structures, such as solving the stationary distribution of
multiple coupled queues.
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Appendix
A Experimental Environment
All experiments are performed on a machine equipped with
an 8-core Intel(R) Xeon(R) Gold 6151 CPU @ 3.00GHz, 64
GB RAM, and an NVIDIA Tesla V100 SXM2 32 GB GPU, in
a docker container running EulerOS 4.8.5. The Transformer
encoder and decoder comes from the official PyTorch imple-
mentation.

The relevant packages and their versions are as follows:
Python == 3.6.4, torch == 1.4.0, scikit-learn == 0.19.1,
numpy == 1.19.0, CUDA == 10.2.

B The Quick-Max Algorithm
We mentioned the sequential maximization. The pseudo code
of the algorithm is presented in Algorithm 1.

Algorithm 1 The quick-max algorithm
Input: Qi(si, ·) for all i = 1, . . . , N , and M
Output: a = [a1, . . . , aN ]
Initialization: counter← 0

1: for all i = 1 . . . , N do
2: ai ← argmaxQi(si, ·)
3: counter← counter +ai
4: if counter =M then
5: break
6: end if
7: end for

C Additional Comments on Time complexity
The myopic policy does not involve offline computation and
thus yields zero time overhead. We show the time spent for
calculating the Whittle indices in Figure 4. We can see that
the complexity is linear in the number of arms as the indices
are computed independently for each arm. Moreover, the
complexity scales up as the state increases as we need to com-
pute the indices for each state. For comparison, the time spent
in our approach does not scales up with respect to the number
of states due to the readily deployable GPU parallelism.
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Figure 4. Time spent for calculating Whittle indices.

D Additional Performance Comparison
We additionally compare our approach with myopic and in-
dex policies for two types of arms: random shift and random
shift with controlled restart.

Random shift. The active (passive) transition matrix of
a random shift arm is a randomly generated lower (upper)
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Figure 5. Transient performances in ablation study.
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Figure 6. Nonindexable arms with N = 100 and M = 30.

triangular matrix. The non-zero elements in each row is a
decreasing sequence.

Random shift with controlled restart. The passive tran-
sition matrix is still an upper triangular matrix, but the active
transition is now a deterministic one as Pi(si = 0|s′i, 1) = 1.

The reward functions are the same as those in the paper. We
use the same setup as we did for the controlled restart process
in the paper to compare the performances of each policy. Ta-
ble 3 shows related results. Our approach out performs the
other two.

Table 3. Additional performance comparison

random shift

N 10 20 50

myopic 5536.3(128.7) 11343.6(215.5) 29174.8(187.8)
index 5680.4(58.5) 11790.2(97.4) 30046.8(152.7)
ours 5872.4(131.3) 12050.4(172.1) 30708.8(239.0)

random shift with restart

N 10 20 50

myopic 6080.6(113.5) 12551.2(126.0) 31118.4(176.9)
index 5916.0(34.7) 12460.4(57.4) 30991.2(82.9)
ours 6382.1(94.0) 13187.4(128.6) 32821.5(222.2)

E Additional Figures and Results
Figure 5 shows the transient performances of each method in
the ablation study. Figure 6 shows the transient performances
of each policy for a setup with N = 100 arms and a cardinal-
ity constraint M = 30.
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