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Summary: The restricted mean survival time (RMST) evaluates the expectation of survival time truncated by

a prespecified time point, because the mean survival time in presence of censoring is typically not estimable. The

frequentist inference procedure for RMST has been widely advocated for comparison of two survival curves, while

research from the Bayesian perspective is rather limited. For the RMST of both right- and interval-censored data, we

propose Bayesian nonparametric estimation and inference procedures. By assigning a mixture of Dirichlet processes

(MDP) prior to the distribution function, we can estimate the posterior distribution of RMST. We also explore

another Bayesian nonparametric approach using the Dirichlet process mixture model and make comparisons with the

frequentist nonparametric method. Simulation studies demonstrate that the Bayesian nonparametric RMST under

diffuse MDP priors leads to robust estimation and under informative priors it can incorporate prior knowledge into

the nonparametric estimator. Analysis of real trial examples demonstrates the flexibility and interpretability of the

Bayesian nonparametric RMST for both right- and interval-censored data.
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1. Introduction

Survival data often appear in phase II and phase III clinical trials, where the primary focus

is to evaluate the treatment effect of a new therapy in comparison with the standard of care.

Model-based approaches have been widely used for quantifying survival benefit due to their

capability of incorporating covariate information. However, parametric or semi-parametric

models might be problematic if the underlying model assumptions are incorrect. For example,

the hazard ratio (HR) is a common choice to assess the survival difference, which relies upon

the proportional hazards (PH) assumption. If the PH assumption is violated, the estimated

HR may not have a clinically meaningful interpretation (Uno et al., 2014). To mitigate the

influence of invalid model assumptions, nonparametric (model-free) estimators have been

proposed, such as the t-year survival rate and percentiles of the survival function. However,

these estimators mainly focus on local survival information at a particular time point of the

survival curve, rather than providing a global summary of survival over time.

Recently, an alternative measure, called the restricted mean survival time (RMST), has

attracted much research attention (Royston and Parmar, 2013; Uno et al., 2014). The

RMST is computed as the area under the survival curve up to a prespecified time point

τ . For right-censored data, RMST can be easily estimated by plugging in the Kaplan–Meier

(KM) curve for the survival function. The RMST inherits the robustness property from the

KM estimator which is the nonparametric maximum likelihood estimator (NPMLE) for the

survival function, and is thus free from any model assumption. More importantly, RMST

evaluated at τ has a clinically meaningful interpretation, which is the expected survival time

during a τ -period of follow-up. Zhao et al. (2016) proved the asymptotic properties of the

estimated RMST and developed the frequentist inference procedure. However, research on

the RMST from the Bayesian nonparametric perspective is rather limited.

To fill in the gap, we develop a Bayesian nonparametric approach to estimating the RMST
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with either right- or interval-censored data. In particular, we adopt a Bayesian nonparametric

model by assigning a mixture of Dirichlet processes (MDP) prior to the distribution function

F (Antoniak, 1974), and construct a Gibbs sampler to generate the posterior samples

of RMST. The proposed Bayesian MDP-based RMST can be viewed as an interpolation

between a frequentist nonparametric estimator and a parametric estimator, which provides

a useful tool for Bayesian nonparametric survival analysis.

The rest of this paper is organized as follows. Section 2 reviews the related literature

on RMST and Bayesian nonparametric approaches, and Section 3 presents the posterior

sampling algorithm for RMST using an MDP prior on F . Section 4 includes simulation

studies to compare the performances of the Bayesian MDP-based approach with other

existing methods. Two real clinical trial examples are provided in Section 5 to illustrate

the applications of the Bayesian nonparametric RMST. Section 6 concludes this paper with

some remarks.

2. Background

2.1 Restricted Mean Survival Time

The mean survival time is of great interest in clinical studies, while it cannot be estimated

accurately due to the presence of censored observations. The restricted mean survival time,

RMST(τ), which is calculated as the area under the survival curve up to a certain time point

τ (Royston and Parmar, 2013), can be interpreted as the average survival (or event-free) time

for patients during the τ -period of follow-up. For right-censored data, we can easily obtain

the estimator of RMST(τ) by plugging in the KM curve, Ŝ(·), which is the NPMLE of the

survival function S(·), i.e., R̂MST(τ) =
∫ τ
0
Ŝ(u)du. Through integration of the KM estimator

over time, RMST can capture the global profile of survival. In contrast, the t-year survival

rate or median survival time mainly depends a particular time point or a probability with
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no regard on how the survival path reaches that point or how the survival curve behaves

past that point.

[Figure 1 about here.]

The RMST can circumvent the weaknesses of the commonly used clinical measures for

survival data. The HR and other parametric estimators often rely upon certain model

assumptions and they may be inaccurate if the model is misspecified. As shown in Figure 1

which exhibits KM curves for two treatment groups in the CheckMate-057 trial (Borghaei

et al., 2015), the median survival time fails to detect clinical effectiveness for treatment with

delayed effect, because it ignores the survival information below the median. Sometimes, the

percentile survival time is not even available when the event rate is low, i.e., the KM curve

cannot drop to the percentile of interest. Computed as integration of the survival curve from

0 to τ , RMST(τ) is always estimable, and it yields a nonparametric and global summary for

treatment effect with a transparent clinical interpretation.

Due to the dependence of RMST(τ) on τ , τ should be prespecified with caution, and

different choices of τ may lead to different conclusions when comparing two treatments. To

maintain the asymptotic validity of the RMST estimation and capture survival information

as much as possible, a commonly suggested choice for τ is the largest follow-up time among

all right-censored observations (Tian et al., 2020).

Based on the asymptotic properties of R̂MST(τ), Zhao et al. (2016) developed the fre-

quentist inference procedure for RMST with right-censored data. Nowadays, RMST has

been widely used in clinical data analysis (Saluja et al., 2019; Angelucci et al., 2020) and

trial design (Guimarães et al., 2021). It has also been used for developing the number needed

to treat (NNT) for survival endpoints, which has better interpretations than the traditional

NNT (Yang and Yin, 2019).
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2.2 Interval Censoring

Interval censoring often appears when the event time T cannot be exactly observed, but

is known to fall inside an interval (L,R]. The interval-censored observations are typically

represented as a collection of intervals {(Li, Ri]}ni=1. Right censoring can be viewed as a

special case of interval censoring if either (Li, Ri] shrinks to one value with Li = Ri or

Ri =∞.

[Figure 2 about here.]

For interval-censored data, the NPMLE Ŝ of the survival function S takes the form of

probabilities assigned on disjoint intervals, and the behaviors of the survival curve within

these disjoint intervals are versatile (Turnbull, 1976). Thus, Ŝ for interval-censored data

is not unique, which only provides the lower and upper bounds displayed as rectangles as

shown in Figure 2. A naive approach is to treat interval-censored observations (Li, Ri] as

right-censored (Xi,∆i), i.e., (Xi = Ri,∆i = 1) if Ri <∞, and (Xi = Li,∆i = 0) if Ri =∞.

Turnbull (1976) suggested a nonincreasing step function which drops at the left endpoints of

those rectangles of Ŝ, i.e., the most pessimistic scenario for the survival probability. Linear

smoothing estimation for the survival function has also been considered for interval-censored

data (Pan, 2000; Zhang et al., 2020).

2.3 Bayesian Nonparametric Analysis

To mitigate limitations of parametric modelling, Ferguson (1973) defined the Dirichlet pro-

cess (DP) and discussed DP priors on the posterior estimation for nonparametric models.

Let DP (αG0) denote a DP with parameter αG0 where α is a precision parameter and G0 is

a base probability distribution. Ferguson (1973) showed that if a DP prior is assigned to the

distribution function F , F ∼ DP (αG0), and given the observed data T1, . . . , Tn
i.i.d.∼ F , then

the posterior F |{T1, . . . , Tn} is again a DP with parameter αG0 +
∑n

i=1 δTi , where δTi = 1 at

point Ti and 0 otherwise (i.e., δTi has a point mass at Ti). Therefore, the DP can be utilized
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as a conjugate prior on the distribution function F for Bayesian nonparametric problems.

Instead of fixing αG0 in the DP, Antoniak (1974) further proposed a mixture of Dirichlet

processes (MDP) by taking αG0 to be random. Let Θ be a parameter space, and for each

θ ∈ Θ, Mθ is a positive real number, Gθ is a probability distribution and MθGθ is the

parameter of a Dirichlet process DP (MθGθ). Let H be a probability distribution on Θ, and

then
∫
Θ
DP (MθGθ)dH(θ) is an MDP with a mixing distribution H.

The DP prior and its variants have been widely used in Bayesian nonparametric survival

analysis. For right-censored data, Susarla and Van Ryzin (1976) assigned a DP prior on

the distribution function F and derived the posterior moment estimate of F under the

squared error loss. The posterior distribution of F under a DP prior in right-censoring

cases was shown to be an MDP (Blum and Susarla, 1977). Johnson and Christensen (1986)

generalized the model in Susarla and Van Ryzin (1976) to nested interval-censored data and

derived an explicit formula for the posterior estimate of the survival function. Kuo et al.

(1992) constructed a Gibbs sampler which iteratively samples the exact event time under

the interval-censored constraint and the parameters of interest. Calle and Gómez (2001)

obtained the posterior estimate of the survival function for interval-censored data by using a

DP prior on F and showed that the Bayesian estimator shrinks the nonparametric estimator

to a parametric one. Zhou (2004) derived an explicit formula for the nonparametric Bayesian

estimator of the survival function with interval-censored data under a DP prior. Instead of

assigning a DP prior to F , Doss (1994) obtained posterior samples for the density function

under an MDP prior on F by successive substitution sampling with interval-censored data.

Doss and Huffer (2003) constructed Gibbs samplers to approximate the posterior distribution

of F under MDP priors, which significantly improved computational efficiency.

Another important tool in Bayesian nonparametric analysis is the Dirichlet process mix-

ture (DPM) model. Given observations T1, . . . , Tn, the DPM model assumes that Ti|θi ∼
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f(·|θi), θi ∼ G, i = 1, . . . , n, and G ∼ DP (αH), where α is a precision parameter and H is

a base probability distribution of the DP. Escobar (1994) applied the DPM model to estimate

a vector of normal means. Escobar and West (1995) illustrated Bayesian density estimation

under a DPM model via the predictive distribution of a future observation. Kottas and

Gelfand (2001) employed the DPM to model the error distribution under median regression.

De Iorio et al. (2009) developed a Bayesian semiparametric survival model based on DPM

without the PH assumption. MacEachern and Müller (1998) and Neal (2000) summarized

existing Gibbs sampling techniques and proposed new algorithms for nonconjugate DPM

models. Gelfand and Kottas (2002) proposed a fully nonparametric approach to sampling

from the posterior distribution of general functionals of the mixture distribution.

Under the DPM model, we can obtain the posterior estimates of the survival curve and

RMST based on the predictive distribution of a future observation Tn+1 and its latent param-

eter θn+1 (Gelfand and Mukhopadhyay, 1995). Given the k-th posterior sample (θ
(k)
1 , . . . ,θ(k)n ),

one can draw a posterior sample ofG fromDP (
∑n

i=1 δθ(k)i
+αH). A posterior sample of RMST

is a linear functional of F (·|G), which can be obtained using the parametric model f(·|θ)

and a realization of G|Data (Gelfand and Kottas, 2002). Compared with the MDP approach,

DPM provides a smoother distribution estimate because its posterior estimator has a form of

a distribution over some mixture models, which has been widely used in density estimation

and clustering problems (Escobar, 1994; Escobar and West, 1995; MacEachern and Müller,

1998). Nevertheless, the DPM estimator is relatively sensitive to the specification of the

parametric model f(·|θ), which may compromise its performance in modeling nonparametric

measures from the Bayesian perspective.

By assigning an MDP prior to the distribution function F , we can directly obtain a

realization from the posterior distribution of F at each iteration of the Gibbs sampler without

extra operations (Doss and Huffer, 2003). The distribution function F under an MDP prior
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centers on a family of parametric distribution Gθ with a prior θ ∼ H(θ). When Mθ → ∞

for all θ, the base measure Gθ of MDP dominates the model and the posterior estimate

of F converges to the Bayesian parametric model under the distribution Gθ and the prior

θ ∼ H(θ). When Mθ → 0 for all θ, the nonparametric component dominates the model,

and the posterior of F converges to the NPMLE. As a result, the Bayesian nonparametric

method with an MDP prior on F takes a middle-ground approach between parametric and

nonparametric models.

3. Methodology

For interval-censored data, we introduce a sampling algorithm for drawing posterior samples

of RMST. At each iteration, a posterior sample of the distribution function F is generated

by a Gibbs sampler (Doss and Huffer, 2003), and then the posterior sample of RMST(τ) can

be calculated as the area under the survival curve from 0 to τ using the trapezoid rule.

For simplicity, we assume Mθ ≡ M and F ∼
∫
Θ
DP (MGθ)dH(θ). Given an MDP prior

on F and the observations T = (T1, . . . , Tn), Antoniak (1974) proved that the posterior

distribution of F has the form,

F |T ∼
∫
Θ

DP

(
MGθ +

n∑
i=1

δTi

)
dH(θ|T ),

dH(θ|T ) = c(T )

m(T )∏
i=1

dGθ(Yi) dH(θ), (3.1)

where m(T ) is the number of distinct values of T , Y = {Y1, . . . , Ym(T )} are distinct values

of T , and c(T ) is a normalization constant.

Due to interval censoring, the exact event time Ti is typically unavailable and we only

know that Ti falls inside an interval Ai = (Li, Ri]. Thus, the observed data are composed

of {Ai : Ti ∈ Ai = (Li, Ri], i = 1, . . . , n}. When a DP prior is assigned to F , the Pólya

urn scheme (Blackwell and MacQueen, 1973) can be used to sample from the conditional
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distribution T |θ, {Ai}ni=1. Based on the posterior distribution θ|T in (3.1) and the Pólya

urn scheme, a Gibbs sampler can be constructed, for which the k-th iteration proceeds as

follows:

θ(k) ∼H(θ|T (k−1)),

T
(k)
i ∼

(
MGθ(k) +

∑
j<i

δ
T

(k)
j

+
∑
j>i

δ
T

(k−1)
j

)
Ai

, i = 1, . . . , n, (Pólya urn scheme)

F (k) ∼DP

(
MGθ(k) +

n∑
i=1

δ
T

(k)
i

)
, (3.2)

where (α)A denotes a truncated measure by restricting α in the set A. We can further

compute RMST(τ) by the trapezoid rule,

RMST(k)(τ) ≈
L∑
j=1

S(k)(τj) + S(k)(τj−1)

2
(τj − τj−1),

S(k)(τj) =1−
j∑
l=1

F (k)((τl−1, τl]),

{
F (k)((τj−1, τj])

L+1
j=1

}
∼Dirichlet

(
p
(k)
1 , . . . , p

(k)
L+1

)
,

p
(k)
j =MGθ(k)((τj−1, τj]) +

n∑
i=1

δ
T

(k)
i

((τj−1, τj]), j = 1, . . . , L+ 1,

where 0 = τ0 < τ1 < · · · < τL = τ < τL+1 = ∞ are time grids for the trapezoid method,

F ((a, b]) = PX∼F (a < X 6 b) and δx((a, b]) = I(a < x 6 b).

We conduct an extra step to reallocate cluster locations every nextra iterations in order to

improve the mixing of the chain and the exploration of the posterior cluster structure (Doss

and Huffer, 2003; MacEachern, 1994; Bush and MacEachern, 1996). In practical applications,

we set nextra = nthin, the thinning interval. The entire sampling procedure is detailed in

Algorithm 1.

Bayesian nonparametric estimation for the distribution function F based on an MDP

prior can be viewed as an interpolation between the nonparametric and parametric estimates

(Doss, 1994; Doss and Huffer, 2003). The parametric part is formulated by H(θ) and Gθ, and
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Algorithm 1 Gibbs sampler for Bayesian nonparametric MDP-based RMST

Prior: M,Gθ and H(θ) for the mixture of Dirichlet processes prior on F .
Observations: {Ai = (Li, Ri], for i = 1, . . . , n}.
Settings: N (number of posterior samples); nextra (reallocation frequency to update cluster

centers); nthin (thinning interval); L (number of points for the trapezoid rule).
Initialization: T (0) and θ(0).
1: τj ← jτ/L , j = 1, . . . , L; τL+1 ←∞
2: for k = 1, . . . , Nnthin do
3: Generate θ(k) ∼ H(θ|T (k−1))

4: Generate T
(k)
i ∼

(
MGθ(k) +

∑
j<i δT (k)

j
+
∑

j>i δT (k−1)
j

)
Ai

, i = 1, . . . , n

5: if (k mod nextra) = 0 (modulo operation) then

6: {Y (k)
j }

m(T (k))
j=1 ← distinct values of T (k)

7: Obtain the subindices (c1, . . . , cn) so that T
(k)
i = Y

(k)
ci

8: for j = 1, . . . ,m(T (k)) do
9: Bj ← ∩i:ci=jAi

10: Generate Y
(k)
j ∼ (MGθ(k))Bj

11: end for
12: T

(k)
i ← Y

(k)
ci , i = 1, . . . , n

13: end if
14: p

(k)
j ←MGθ(k)((τj−1, τj]) +

∑n
i=1 δT (k)

i
((τj−1, τj]), j = 1, . . . , L+ 1

15: Generate {F (k)((τj−1, τj])}L+1
j=1 ∼ Dirichlet(p

(k)
1 , . . . , p

(k)
L+1)

16: Calculate RMST(k) by the trapezoid rule
17: end for
Output: RMST(k), k = mnthin, m = 1, . . . , N

Extra step

M controls the proportions of nonparametric and parametric contributions in the posterior

estimation. One can specify Gθ as some parametric survival model and H(θ) as a conjugate

prior, e.g., for a scalar parameter θ we take Gθ to be Exp(θ) and H(θ) to be Gamma(a0, b0).

To incorporate prior information, H(θ) and Gθ can be estimated from historical data or

elicited from experts’ opinion.

4. Simulation Studies

In the simulation studies, we compare the proposed Bayesian nonparametric RMST using the

MDP prior with that using the DPM prior, as well as Bayesian parametric and frequentist

nonparametric methods. We investigate RMST estimation for both right- and interval-
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censored data by evaluating the posterior mean of RMST and coverage probability (CP)

of the equal-tailed credible interval (CrI) for Bayesian approaches.

4.1 Simulation Settings

We consider both exponential and log-normal distributions for the base measure to examine

the influence of model flexibility on RMST estimation. For the Bayesian MDP approach with

an exponential base distribution, we assume that Gθ is a family of exponential distributions

with rate parameter θ and the prior H for θ is Gamma(a0, b0). Under the log-normal base

distribution, we set G(µ,ξ) to be Log-Normal(µ, ξ) where ξ is a precision parameter, and take

a normal-gamma mixing distribution for H(µ, ξ), i.e., (µ, ξ) ∼ Normal-Gamma(µ0, λ0, a0, b0).

For the DPM model, we consider (i) the exponential mixture model, Ti|θi ∼ Exp(θi), θi ∼

G,G ∼ DP (αH), where H is a Gamma(a0, b0) distribution; and (ii) the log-normal mixture

model, Ti|µi, ξi ∼ Log-Normal(µi, ξi), (µi, ξi) ∼ G,G ∼ DP (αH), where H is a Normal-

Gamma(µ0, λ0, c0, d0) distribution. We construct a Gibbs sampler to obtain the posterior

samples of RMST(τ) by iteratively generating the exact event time Ti given the interval

constraint Ai and sampling the parameter of interest (Kuo et al., 1992). The detailed

sampling algorithm for the DPM approach is given in Web Appendix A.

Under the Bayesian parametric approach, we assume Ti|θ ∼ Exp(θ), i = 1, . . . , n with

a gamma prior θ ∼ Gamma(a0, b0), as well as Ti|µ, ξ ∼ Log-Normal(µ, ξ) with a normal-

gamma prior (µ, ξ) ∼ Normal-Gamma(µ0, λ0, c0, d0). For interval-censored data {Ai}ni=1, we

apply a Gibbs sampler (Kuo et al., 1992) to obtain the posterior samples of θ, which iterates

between sampling from Ti|Ai, θ and θ|{Ti, i = 1, . . . , n}. The posterior samples of RMST(τ)

can be computed by RMST(τ |θ) = (1− e−τθ)/θ.

For both right- and interval-censored cases, observed data are respectively simulated from

Weibull, piecewise exponential and log-normal distributions with moderate (n = 100) and

small (n = 20) sample sizes. Two piecewise exponential distributions are considered: (A)
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λ(t) = 0.5, t ∈ [0, 1];λ(t) = 1, t ∈ (1,∞); (B) λ(t) = 1, t ∈ [0, 1];λ(t) = 0.5, t ∈ (1,∞).

The study end time is set as 2 for all simulations. We adopt diffuse priors with hyper-

parameters (a0, b0) = (0.01, 0.01) under the exponential base measure, (µ0, λ0, c0, d0) =

(0, 0.01, 0.01, 0.01) under the log-normal base measure, and M = 10−6 for the Bayesian

MDP approach. For the Bayesian DPM approach, we take α ∼ Gamma(0.01, 0.01).

For right-censored data, we assume that the censoring time follows an exponential dis-

tribution, under which the rate parameter is adjusted to yield a censoring rate of 40%. As

suggested by Tian et al. (2020), τ is set to be the maximum observed time in each simulation.

For interval-censored data, each patient is monitored by every 0.2 time interval to mimic

the pattern of real clinical trials in which patients are examined periodically. The first ex-

amination time follows Uniform(0, 0.2), and patients may miss any of the examinations with

probability pdropout = 0.2 due to loss of the follow-up. The interval observation of a patient

is recorded as the shortest interval covering the exact event time Ti. In each simulation, we

set τ as the maximum value of {Li, i = 1, . . . , n}. We evaluate the performances of RMST

estimation using the MDP, DPM, Bayesian parametric, naive (which treats interval-censored

observations as right-censored ones) and linear smoothing methods (Zhang et al., 2020). The

linear smoothing RMST can be viewed as a frequentist nonparametric estimator for interval-

censored cases.

[Table 1 about here.]

[Table 2 about here.]

4.2 One-sample Simulations

Tables 1 and 2 present the simulation results based on 5000 replications for the right- and

interval-censored RMST estimation under diffuse priors, respectively. With relatively large

sample size n = 100, both frequentist and Bayesian MDP approaches can deliver accurate

point estimates and CPs in both right- and interval-censoring cases. When sample size is as
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small as n = 20, the Bayesian MDP-based RMST outperforms the frequentist counterpart

in all scenarios in terms of CPs, because the frequentist confidence interval is constructed

based on the asymptotic property. The posterior estimates of RMST under the Bayesian

parametric and nonparametric DPM methods depend on the fit of the specified model.

When the model is correct, both approaches can provide accurate RMST estimates and

the CPs are close to the nominal level 95%. However, when the model is misspecified, the

posterior RMST estimates under Bayesian parametric and DPM approaches with diffuse

priors are biased with inaccurate CPs. The exponential base measure in the DPM is sensitive

to model misspecification and thus the performances of Bayesian nonparametric DPM and

parametric approaches are poor when the model is misspecified. The log-normal distribution

has two parameters, which is thus more flexible and can mitigate the influence of model

misspecification. Nevertheless, the Bayesian nonparametric DPM still yields inappropriate

interval estimates with CPs larger than 0.96 when the assumed model does not match the

true event time distribution and sample size is n = 100. With smaller sample size n = 20, CPs

decrease under all approaches and the Bayesian nonparametric DPM method shows slightly

better performances than the Bayesian MDP-based estimator. The RMST under the DPM

model has the form RMST(τ |G) =
∫

RMST(τ |θ)dG(θ), for which the specified distribution

of the event time plays an important role. By taking the most optimistic treatment for

interval-censored observations, the naive RMST estimator is substantially larger than the

true value in all scenarios, and the coverage probabilities are far below the nominal level.

In addition, we evaluate the performances of the Bayesian nonparametric and parametric

methods under informative priors to examine the influence of prior information on the

corresponding RMST estimation. Simulation results summarized in Web Tables 1 to 4 of

Web Appendix B demonstrate that the Bayesian MDP-based RMST is more robust to

misspecified prior information and all Bayesian methods would benefit from appropriate
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priors and yield smaller mean squared errors (MSEs) in comparison with the frequentist

NPMLE.

4.3 Two-sample Simulations

In the comparison of two survival curves, a one-sided hypothesis test can be constructed

using RMST,

H0 : RMST1(τ) 6 RMST2(τ) versus H1 : RMST1(τ) > RMST2(τ).

Under Bayesian approaches, we calculate the posterior probability of the null hypothesis,

P (H0|Data), which can be approximated using the posterior samples of RMSTj(τ), j = 1, 2.

The null hypothesis would be rejected under the significance level α if P (H0|Data) 6 α (Shi

and Yin, 2020).

[Table 3 about here.]

[Table 4 about here.]

Simulation results on two-sample comparison under diffuse priors based on 1000 replica-

tions are given in Tables 3 and 4 for right- and interval-censored data, respectively. Clearly,

the Bayesian MDP and frequentist nonparametric approaches can maintain the test size at

the nominal level 5% in all scenarios, while the Bayesian DPM and parametric methods tend

to be more conservative. In terms of power, with both medium (n = 100 per group) and

small (n = 20 per group) sample sizes, the Bayesian MDP and frequentist nonparametric

approaches deliver similar performances, while the Bayesian DPM and parametric methods

are less likely to reject H0 under H1, especially when the model is misspecified.

5. Examples

Two real clinical studies with right- and interval-censored data respectively are used to

illustrate the application of our proposed Bayesian nonparametric RMST. We compare the
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estimated survival curves using the Bayesian MDP and DPM methods under the log-normal

model using diffuse priors with the frequentist nonparametric counterparts. The Bayesian

MDP-based RMST is evaluated at several time points to examine the influence of time τ

on RMST estimation and two-sample Bayesian hypothesis tests. We assign the same MDP

prior (M,H,G) to the two treatment groups and set the prior probabilities of H0 and H1 to

be equal, i.e., P (H0) = P (H1) = 1/2. The Bayes factor in favor of H1 over H0 is used for

Bayesian hypothesis testing, which is equal to the posterior odds P (H1|Data)/P (H0|Data).

5.1 CheckMate-057 Trial

The CheckMate-057 trial (Borghaei et al., 2015) was conducted to evaluate the treatment

efficacy of nivolumab versus docetaxel for patients with advanced nonsquamous non-small-

cell lung cancer. The sample sizes for the nivolumab and docetaxel groups are 292 and 290,

respectively. Figure 1(a) shows the overall survival (OS) curves for the two arms. Borghaei

et al. (2015) reported the superiority of nivolumab over docetaxel in OS with an HR of 0.73

(95% CI [0.59, 0.89]). During the first seven months, patients receiving docetaxel had higher

survival rates than those receiving nivolumab. After the crossing of survival curves at month

7, the situation reversed till the end of the study. We plot the estimated log(HR) over time

in Figure 1(b). The PH test based on weighted residuals (Grambsch and Therneau, 1994)

indicated a violation of the PH assumption (p = 0.001). Several Bayesian nonparametric

methods have been proposed to deal with the non-PH cases (De Iorio et al., 2009).

We take τ = 24 months to investigate the treatment effect on preventing the occurrence

of death during the two-year follow-up. Based on the posterior samples obtained by the

Bayesian MDP-based approach, the posterior estimate of 24-month RMST for the nivolumab

and docetaxel groups are 12.91 (95% CrI [11.90, 13.92]) and 11.17 (95% CrI [10.30, 12.07])

months, respectively. We observe an RMST difference of 1.74 months with the 95% CrI

[0.39, 3.10] between the two groups, which indicates that during the two-year follow-up
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period, patients receiving nivolumab on average enjoyed an extra survival gain of 1.74 months

compared with those receiving docetaxel. With the nivolumab and docetaxel arms as groups

1 and 2 in the one-sided hypothesis test, the estimated P (H0|Data) is 0.006, which is identical

to the one-sided frequentist p-value. The posterior odds favoring H1 over H0 is approximately

171, which provides decisive evidence against H0.

To evaluate the influence of the choice of τ on the RMST estimation, we also examine

the RMST at month 6. During the first six months, the survival curve of the docetaxel

group is above that of the nivolumab group and the estimated posterior mean of the RMST

difference is -0.18 (95% CrI [-0.44, 0.09]) months between the nivolumab and docetaxel

groups. Furthermore, we obtain P (H0|Data) = 0.9 and a Bayes factor of 0.11 favoring H1

over H0.

5.2 Breast Cosmesis Study

The Breast Cosmesis Study (BCOS) dataset (Finkelstein and Wolfe, 1985) is collected from

a retrospective study on the time to cosmetic deterioration of the breast to compare the

treatment benefit between the addition of adjuvant chemotherapy to the radiation therapy

(RCT, 48 patients) and the radiation therapy (RT, 46 patients) alone. Patients were required

to visit the clinic every 4 to 6 months, leading to interval-censored observations. The NPMLE

of survival curves for the two groups are exhibited in Figure 2(a) with solid lines, which are

displayed in rectangles within some intervals due to the ambiguities on the estimation of

survival curves caused by interval censoring. We also plot the posterior means of survival

probabilities using the Bayesian nonparametric MDP and DPM approaches under diffuse

priors.

For the BCOS dataset, we choose τ = 46 months which is the minimum value of the largest

left endpoints for the interval censored observations in the RT and RCT groups. The Bayesian

nonparametric MDP approach yields the posterior mean of RMST(46)=32.7 for the RT group
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with the 95% CrI [27.9, 37.1] and 24.1 for the RCT group with the 95% CrI [20.6, 27.9]. The

difference in RMST(46) between the two groups is 8.6 months, which indicates that patients

in the RT group enjoyed on average additional 8.6 months free of cosmetic deterioration

during the 46-month follow-up compared with those in the RCT group. As shown in Figure

2(b), the two histograms of RMST are quite separated, indicating overwhelming evidence

that RT provided more treatment benefit than RCT for patients. For the hypothesis test

of H0 : RMSTRT(46) 6 RMSTRCT(46) versus H1 : RMSTRT(46) > RMSTRCT(46), the

posterior probability of the null hypothesis is 0.003, which is close to the one-sided p-value

= 0.001 obtained by the linear smoothing RMST inference (Zhang et al., 2020). The Bayes

factor of 341 for H1 over H0 provides decisive evidence in favor of the alternative hypothesis.

We also consider two additional time points τ = 35 and 25 months, under which histograms

for the posterior RMST samples are shown in Figure 2(c) and (d) respectively. With a smaller

value of τ , the histograms of the posterior RMST samples for two treatments are largely

overlapped. From Figure 2(a), two survival curves cross at 17 months, and the survival curve

of the RT group stays above that of the RCT group during the remaining follow-up till 46

months. Therefore, the RMST, computed as the integration of the survival function from 0

to τ , would accumulate more evidence in favor of H1 as τ increases.

6. Discussion

As a nonparametric metric for quantifying treatment effect, the RMST is model-free and

robust, and further it has a clinically meaningful interpretation. We develop the estimation

and inference procedure for the RMST in the Bayesian nonparametric framework using an

MDP prior on the distribution function F . A Gibbs sampler is constructed to generate

posterior samples of the RMST. Not only does the proposed method perform well for right-

censored data but it also fits to interval-censored scenarios. Simulation results show that

under diffuse priors our Bayesian MDP-based RMST can produce consistent estimates even
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with small sample size and the corresponding hypothesis test can maintain the test size

and yield higher power than that using the Bayesian DPM method. Compared with the

Bayesian DPM approach, the MDP-based RMST is less sensitive to the parametric model

setting. Additional studies shown in the Web Appendix B demonstrate that the Bayesian

nonparametric MDP approach can provide better RMST estimation with smaller MSEs by

incorporating accurate prior information and it can mitigate the influence of misinformative

prior beliefs due to the contribution from the nonparametric component.

Selection of the time point τ is critical in RMST estimation. In the frequentist paradigm,

the largest follow-up time is a common choice for τ (Tian et al., 2020), while such τ is

data-dependent. Under the Bayesian nonparametric MDP approach, we can obtain posterior

samples of RMST for any τ , because the parametric model component can provide ‘impu-

tation’ beyond the largest follow-up time. One should specify τ from a clinical or scientific

perspective according to the requirements of the trial. Moreover, our Bayesian RMST can

also be utilized as a tool in clinical trial design to substitute for the t-year survival rate or

the median survival time.
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Figure 1: (a) Kaplan–Meier estimators (solid lines), posterior means using Bayesian MDP
(dashed lines, but completely overlapped with Kaplan–Meier curves) and DPM (dotted lines)
for overall survival of the CheckMate-057 trial (Borghaei et al., 2015). (b) Logarithm of
the hazard ratio (HR) (nivolumab versus docetaxel) for overall survival. Histograms of the
posterior RMST samples for the docetaxel (green) and nivolumab (red) groups under a
diffuse MDP prior evaluated at (c) τ = 24; (d) τ = 6 months.
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Figure 2: (a) Survival probabilities for the time to cosmetic deterioration of the BCOS
study (Finkelstein and Wolfe, 1985) estimated by the frequentist NPMLE (solid lines),
Bayesian MDP (dashed lines) and DPM (dotted lines). Histograms of the sampled posterior
RMSTs under a diffuse MDP prior for the radiation therapy (RT, red) and the radiation +
chemotherapy therapy (RCT, green) groups evaluated at (b) τ = 46; (c) τ = 35; (d) τ = 25
months.
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Table 1: One-sample simulation results on RMST estimation and 95% coverage probability
(CP) with right-censored data using Bayesian nonparametric MDP and DPM as well as
Bayesian parametric and frequentist nonparametric approaches.

Bayesian Nonparameteric Bayesian Frequentist

True MDP DPM Parametric Nonparametric

Model n Distribution RMST Est. CP Est. CP Est. CP Est. CP

Exp* 100 Weibull(1,0.5) 0.83 0.83 0.950 0.84 0.950 0.89 0.801 0.83 0.944
Exp(1) 0.86 0.86 0.943 0.87 0.947 0.87 0.947 0.86 0.941
Weibull(1.25,2) 1.08 1.08 0.942 0.99 0.820 0.99 0.821 1.08 0.940
Pw-Exp(A)‡ 1.17 1.17 0.945 1.12 0.920 1.14 0.956 1.17 0.943
Pw-Exp(B) 0.92 0.92 0.946 0.94 0.936 0.95 0.914 0.92 0.942
LN(0,1) 1.11 1.11 0.948 1.10 0.962 1.10 0.961 1.11 0.946
LN(-0.5,1) 0.81 0.81 0.945 0.82 0.960 0.82 0.956 0.81 0.940
LN(0.5,1) 1.42 1.42 0.946 1.37 0.912 1.37 0.912 1.42 0.945

20 Weibull(1,0.5) 0.82 0.83 0.934 0.90 0.919 0.89 0.834 0.83 0.916
Exp(1) 0.85 0.86 0.940 0.88 0.947 0.88 0.943 0.86 0.927
Weibull(1.25,2) 1.07 1.08 0.939 0.99 0.954 0.99 0.954 1.08 0.933
Pw-Exp(A) 1.17 1.17 0.931 1.13 0.961 1.15 0.963 1.17 0.918
Pw-Exp(B) 0.92 0.92 0.936 0.97 0.928 0.96 0.921 0.92 0.918
LN(0,1) 1.11 1.11 0.937 1.11 0.963 1.11 0.961 1.11 0.925
LN(-0.5,1) 0.79 0.81 0.948 0.83 0.953 0.83 0.953 0.81 0.939
LN(0.5,1) 1.42 1.42 0.941 1.38 0.957 1.38 0.958 1.42 0.927

LN† 100 LN(0,1) 1.11 1.11 0.950 1.11 0.956 1.11 0.951 1.11 0.946
LN(-0.5,1) 0.81 0.81 0.945 0.81 0.952 0.81 0.946 0.81 0.940
LN(0.5,1) 1.42 1.42 0.947 1.41 0.953 1.42 0.947 1.42 0.944
Pw-Exp(A) 1.17 1.17 0.946 1.15 0.981 1.13 0.936 1.17 0.946
Pw-Exp(B) 0.92 0.92 0.947 0.94 0.960 0.94 0.955 0.92 0.946
Weibull(1,0.5) 0.83 0.83 0.949 0.83 0.970 0.84 0.962 0.83 0.944
Exp(1) 0.86 0.86 0.945 0.87 0.970 0.87 0.964 0.86 0.940
Weibull(1.25,2) 1.08 1.08 0.943 1.07 0.972 1.07 0.963 1.08 0.941

20 LN(0,1) 1.11 1.11 0.938 1.12 0.949 1.12 0.947 1.11 0.926
LN(-0.5,1) 0.79 0.81 0.947 0.81 0.946 0.81 0.944 0.81 0.939
LN(0.5,1) 1.42 1.42 0.940 1.41 0.949 1.42 0.947 1.42 0.926
Pw-Exp(A) 1.17 1.17 0.931 1.14 0.950 1.14 0.947 1.17 0.918
Pw-Exp(B) 0.92 0.92 0.932 0.94 0.946 0.94 0.943 0.92 0.917
Weibull(1,0.5) 0.82 0.82 0.932 0.84 0.957 0.84 0.957 0.83 0.914
Exp(1) 0.85 0.85 0.940 0.87 0.954 0.87 0.955 0.86 0.927
Weibull(1.25,2) 1.07 1.08 0.940 1.07 0.949 1.07 0.947 1.08 0.933

Note: ?Exponential, †Log-Normal, ‡Piecewise-Exponential.



Bayesian Nonparametric RMST 25

Table 2: One-sample simulation results on RMST estimation and 95% coverage probability
(CP) with interval-censored data using Bayesian nonparametric MDP and DPM as well as
Bayesian parametric, naive (which treats interval-censored data as right-censored) and linear
smoothing approaches.

Bayesian Nonparametric Bayesian Naive Linear
True MDP DPM Parametric Right-censored Smoothing

Model n Distribution RMST Est. CP Est. CP Est. CP Est. CP Est. CP

Exp* 100 Weibull(1,0.5) 0.83 0.83 0.950 0.84 0.951 0.92 0.672 0.92 0.761 0.83 0.947
Exp(1) 0.86 0.86 0.950 0.87 0.955 0.87 0.954 0.99 0.527 0.86 0.948
Weibull(1.25,2) 1.08 1.08 0.953 0.96 0.552 0.96 0.553 1.21 0.257 1.08 0.948
Pw-Exp(A)‡ 1.17 1.17 0.953 1.11 0.884 1.11 0.883 1.28 0.579 1.17 0.951
Pw-Exp(B) 0.92 0.92 0.949 0.94 0.932 0.97 0.875 1.03 0.646 0.92 0.947
LN(0,1) 1.11 1.11 0.942 1.10 0.951 1.10 0.949 1.22 0.587 1.11 0.941
LN(-0.5,1) 0.81 0.81 0.946 0.81 0.957 0.81 0.954 0.94 0.417 0.81 0.944
LN(0.5,1) 1.42 1.42 0.942 1.37 0.907 1.37 0.902 1.50 0.701 1.42 0.939

20 Weibull(1,0.5) 0.83 0.83 0.937 0.90 0.913 0.93 0.809 0.92 0.894 0.83 0.921
Exp(1) 0.86 0.87 0.938 0.88 0.954 0.88 0.946 0.99 0.845 0.86 0.923
Weibull(1.25,2) 1.08 1.08 0.932 0.97 0.955 0.97 0.953 1.21 0.742 1.08 0.922
Pw-Exp(A) 1.17 1.17 0.930 1.12 0.964 1.12 0.961 1.28 0.833 1.17 0.918
Pw-Exp(B) 0.92 0.92 0.939 0.97 0.930 0.98 0.903 1.03 0.868 0.92 0.920
LN(0,1) 1.11 1.11 0.931 1.10 0.961 1.10 0.958 1.22 0.852 1.11 0.918
LN(-0.5,1) 0.81 0.81 0.934 0.82 0.955 0.82 0.956 0.93 0.845 0.81 0.915
LN(0.5,1) 1.42 1.42 0.932 1.38 0.950 1.38 0.949 1.50 0.845 1.42 0.916

LN† 100 LN(0,1) 1.11 1.11 0.943 1.11 0.951 1.11 0.941 1.22 0.587 1.11 0.938
LN(-0.5,1) 0.81 0.81 0.945 0.81 0.954 0.81 0.948 0.94 0.418 0.81 0.944
LN(0.5,1) 1.42 1.42 0.941 1.41 0.951 1.42 0.945 1.50 0.701 1.42 0.938
Pw-Exp(A) 1.17 1.17 0.952 1.15 0.972 1.13 0.928 1.28 0.575 1.17 0.949
Pw-Exp(B) 0.92 0.92 0.950 0.93 0.960 0.93 0.951 1.03 0.647 0.92 0.947
Weibull(1,0.5) 0.83 0.83 0.951 0.82 0.967 0.82 0.955 0.92 0.763 0.83 0.949
Exp(1) 0.86 0.86 0.951 0.85 0.971 0.85 0.961 0.99 0.528 0.86 0.948
Weibull(1.25,2) 1.08 1.08 0.951 1.07 0.972 1.07 0.961 1.21 0.256 1.08 0.948

20 LN(0,1) 1.11 1.11 0.931 1.12 0.947 1.12 0.944 1.22 0.852 1.11 0.918
LN(-0.5,1) 0.81 0.81 0.934 0.82 0.949 0.82 0.947 0.93 0.844 0.81 0.913
LN(0.5,1) 1.42 1.42 0.931 1.41 0.947 1.41 0.943 1.50 0.845 1.42 0.915
Pw-Exp(A) 1.17 1.17 0.932 1.14 0.948 1.14 0.943 1.28 0.833 1.17 0.919
Pw-Exp(B) 0.92 0.92 0.937 0.93 0.951 0.93 0.949 1.03 0.868 0.92 0.921
Weibull(1,0.5) 0.83 0.83 0.939 0.83 0.955 0.83 0.953 0.92 0.894 0.83 0.920
Exp(1) 0.86 0.87 0.937 0.86 0.959 0.86 0.959 0.99 0.847 0.86 0.924
Weibull(1.25,2) 1.08 1.08 0.930 1.07 0.953 1.07 0.950 1.21 0.741 1.08 0.922

Note: ?Exponential, †Log-Normal, ‡Piecewise-Exponential.
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Table 3: Two-sample simulation results with right-censored data of sample sizes n = 100 and
20 per group using Bayesian nonparametric MDP and DPM as well as Bayesian parametric
and frequentist nonparametric approaches. The column ‘Prob’ represents the probability of
rejecting H0.

Bayesian Nonparametric Bayesian Frequentist

Fitted True Distribution MDP DPM Parametric Nonparametric

n Model Group 1 Group 2 R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob

Under H0: RMST1(τ) 6 RMST2(τ)
100 Exp* Exp(1) Exp(1) 0.86 0.87 0.046 0.87 0.87 0.039 0.87 0.87 0.046 0.86 0.87 0.047

LN(0,1) LN(0,1) 1.11 1.12 0.052 1.10 1.10 0.040 1.10 1.10 0.039 1.11 1.12 0.051
Pw-Exp‡(B) Pw-Exp(B) 0.92 0.92 0.050 0.95 0.95 0.033 0.95 0.95 0.058 0.92 0.92 0.052

LN† Exp(1) Exp(1) 0.86 0.87 0.046 0.87 0.87 0.024 0.87 0.88 0.029 0.86 0.87 0.046
LN(0,1) LN(0,1) 1.11 1.12 0.054 1.11 1.12 0.043 1.11 1.12 0.049 1.11 1.12 0.052
Pw-Exp(B) Pw-Exp(B) 0.92 0.92 0.050 0.93 0.93 0.031 0.93 0.94 0.034 0.92 0.92 0.051

20 Exp Exp(1) Exp(1) 0.85 0.86 0.045 0.87 0.87 0.048 0.87 0.87 0.049 0.85 0.86 0.047
LN(0,1) LN(0,1) 1.11 1.11 0.067 1.11 1.11 0.050 1.11 1.11 0.050 1.11 1.11 0.070
Pw-Exp(B) Pw-Exp(B) 0.91 0.92 0.053 0.95 0.96 0.067 0.95 0.96 0.070 0.91 0.92 0.054

LN Exp(1) Exp(1) 0.85 0.86 0.046 0.86 0.86 0.035 0.85 0.86 0.034 0.85 0.86 0.047
LN(0,1) LN(0,1) 1.11 1.11 0.067 1.11 1.12 0.059 1.11 1.12 0.065 1.11 1.11 0.070
Pw-Exp(B) Pw-Exp(B) 0.91 0.92 0.053 0.93 0.93 0.043 0.93 0.93 0.042 0.91 0.92 0.055

Under H1: RMST1(τ) > RMST2(τ)
100 Exp LN(-0.5,1) LN(0,1) 0.81 1.12 0.942 0.82 1.10 0.875 0.82 1.10 0.901 0.81 1.12 0.942

LN(0,1) LN(0.5,1) 1.12 1.42 0.933 1.10 1.37 0.864 1.10 1.37 0.897 1.12 1.42 0.937
Pw-Exp(B) Pw-Exp(A) 0.92 1.17 0.784 0.95 1.12 0.416 0.95 1.12 0.512 0.92 1.17 0.793
Exp(1) Weibull(1.25,2) 0.86 1.08 0.797 0.87 0.99 0.345 0.87 0.99 0.352 0.86 1.08 0.800
Weibull(1,0.5) Exp(1) 0.83 0.86 0.096 0.85 0.87 0.000 0.87 0.89 0.094 0.83 0.86 0.094

LN LN(-0.5,1) LN(0,1) 0.81 1.12 0.943 0.81 1.12 0.886 0.81 1.12 0.944 0.81 1.12 0.943
LN(0,1) LN(0.5,1) 1.12 1.42 0.937 1.12 1.42 0.865 1.12 1.42 0.940 1.12 1.42 0.935
Pw-Exp(B) Pw-Exp(A) 0.92 1.17 0.789 0.93 1.15 0.298 0.94 1.13 0.582 0.92 1.17 0.793
Exp(1) Weibull(1.25,2) 0.86 1.08 0.794 0.87 1.07 0.542 0.87 1.07 0.685 0.86 1.08 0.802
Weibull(1,0.5) Exp(1) 0.83 0.86 0.093 0.84 0.87 0.057 0.84 0.87 0.070 0.83 0.86 0.095

20 Exp LN(-0.5,1) LN(0,1) 0.80 1.07 0.405 0.82 1.06 0.343 0.82 1.06 0.342 0.80 1.07 0.418
LN(0,1) LN(0.5,1) 1.11 1.42 0.460 1.11 1.38 0.367 1.11 1.38 0.369 1.11 1.42 0.473
Pw-Exp(B) Pw-Exp(A) 0.92 1.16 0.320 0.96 1.12 0.187 0.96 1.12 0.195 0.92 1.16 0.327
Exp(1) Weibull(1.25,2) 0.86 1.07 0.312 0.87 0.97 0.108 0.87 0.98 0.112 0.86 1.07 0.324
Weibull(1,0.5) Exp(1) 0.81 0.87 0.083 0.87 0.88 0.040 0.88 0.88 0.077 0.81 0.87 0.087

LN LN(-0.5,1) LN(0,1) 0.80 1.07 0.402 0.81 1.07 0.397 0.81 1.07 0.406 0.80 1.07 0.419
LN(0,1) LN(0.5,1) 1.11 1.42 0.460 1.11 1.41 0.430 1.11 1.41 0.449 1.11 1.42 0.473
Pw-Exp(B) Pw-Exp(A) 0.92 1.16 0.320 0.93 1.13 0.211 0.93 1.13 0.222 0.92 1.16 0.332
Exp(1) Weibull(1.25,2) 0.86 1.07 0.314 0.86 1.05 0.243 0.86 1.05 0.249 0.86 1.07 0.322
Weibull(1,0.5) Exp(1) 0.81 0.87 0.085 0.82 0.87 0.057 0.82 0.87 0.056 0.81 0.87 0.086

Note: ?Exponential, †Log-Normal, ‡Piecewise-Exponential.
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Table 4: Two-sample simulation results with interval-censored data of sample sizes n =
100 and 20 per group using Bayesian nonparametric MDP and DPM as well as Bayesian
parametric and linear smoothing approaches. The column ‘Prob’ represents the probability
of rejecting H0.

Bayesian Nonparametric Bayesian Linear

Fitted True Distribution MDP DPM Parametric Smoothing

n Model Group 1 Group 2 R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob R̂MST1 R̂MST2 Prob

Under H0: RMST1(τ) 6 RMST2(τ)
100 Exp* Exp(1) Exp(1) 0.86 0.86 0.054 0.87 0.87 0.047 0.87 0.87 0.053 0.86 0.86 0.052

LN(0,1) LN(0,1) 1.12 1.12 0.052 1.10 1.10 0.043 1.10 1.10 0.043 1.12 1.12 0.053
Pw-Exp‡(B) Pw-Exp(B) 0.92 0.92 0.050 0.96 0.96 0.025 0.97 0.97 0.066 0.92 0.92 0.055

LN† Exp(1) Exp(1) 1.12 1.12 0.051 1.12 1.12 0.044 1.12 1.12 0.055 1.12 1.12 0.052
LN(0,1) LN(0,1) 0.86 0.86 0.052 0.85 0.85 0.028 0.85 0.85 0.044 0.86 0.86 0.052
Pw-Exp(B) Pw-Exp(B) 0.92 0.92 0.051 0.93 0.93 0.029 0.93 0.93 0.046 0.92 0.92 0.053

20 Exp Exp(1) Exp(1) 0.86 0.86 0.065 0.87 0.87 0.052 0.87 0.87 0.051 0.86 0.86 0.064
LN(0,1) LN(0,1) 1.11 1.11 0.050 1.10 1.10 0.031 1.10 1.10 0.031 1.11 1.11 0.057
Pw-Exp(B) Pw-Exp(B) 0.92 0.93 0.049 0.98 0.98 0.052 0.98 0.98 0.061 0.92 0.93 0.061

LN Exp(1) Exp(1) 0.86 0.86 0.062 0.85 0.85 0.044 0.85 0.85 0.047 0.86 0.86 0.066
LN(0,1) LN(0,1) 1.11 1.11 0.054 1.11 1.12 0.042 1.12 1.12 0.043 1.11 1.11 0.057
Pw-Exp(B) Pw-Exp(B) 0.92 0.93 0.054 0.93 0.94 0.042 0.93 0.94 0.042 0.92 0.93 0.059

Under H1: RMST1(τ) > RMST2(τ)
100 Exp LN(0,1) LN(-0.5,1) 1.12 0.81 0.947 1.10 0.81 0.907 1.10 0.82 0.930 1.12 0.81 0.949

LN(0.5,1) LN(0,1) 1.42 1.12 0.941 1.37 1.10 0.882 1.37 1.10 0.913 1.42 1.12 0.941
Pw-Exp(A) Pw-Exp(B) 1.17 0.92 0.802 1.11 0.96 0.327 1.11 0.97 0.434 1.17 0.92 0.802
Weibull(1.25,2) Exp(1) 1.08 0.86 0.809 0.96 0.87 0.250 0.96 0.87 0.252 1.08 0.86 0.815
Exp(1) Weibull(1,0.5) 0.86 0.83 0.115 0.87 0.84 0.000 0.92 0.87 0.183 0.86 0.83 0.112

LN LN(0,1) LN(-0.5,1) 1.12 0.81 0.949 1.12 0.81 0.893 1.12 0.81 0.956 1.12 0.81 0.950
LN(0.5,1) LN(0,1) 1.42 1.12 0.941 1.42 1.12 0.836 1.42 1.12 0.948 1.42 1.12 0.940
Pw-Exp(A) Pw-Exp(B) 1.17 0.92 0.805 1.15 0.93 0.351 1.13 0.93 0.664 1.17 0.92 0.804
Weibull(1.25,2) Exp(1) 1.08 0.86 0.814 1.07 0.85 0.603 1.07 0.85 0.810 1.08 0.86 0.817
Exp(1) Weibull(1,0.5) 0.86 0.83 0.111 0.85 0.82 0.069 0.85 0.82 0.088 0.86 0.83 0.110

20 Exp LN(0,1) LN(-0.5,1) 1.11 0.81 0.477 1.10 0.82 0.405 1.10 0.82 0.411 1.11 0.81 0.488
LN(0.5,1) LN(0,1) 1.42 1.11 0.469 1.37 1.10 0.358 1.37 1.10 0.363 1.42 1.11 0.473
Pw-Exp(A) Pw-Exp(B) 1.17 0.93 0.308 1.12 0.98 0.162 1.12 0.98 0.170 1.17 0.93 0.319
Weibull(1.25,2) Exp(1) 1.08 0.86 0.360 0.97 0.87 0.095 0.97 0.87 0.096 1.08 0.86 0.376
Exp(1) Weibull(1,0.5) 0.86 0.82 0.085 0.91 0.87 0.068 0.92 0.87 0.107 0.86 0.82 0.088

LN LN(0,1) LN(-0.5,1) 1.11 0.81 0.481 1.11 0.81 0.459 1.11 0.81 0.465 1.11 0.81 0.486
LN(0.5,1) LN(0,1) 1.42 1.11 0.469 1.41 1.12 0.433 1.41 1.12 0.443 1.42 1.11 0.479
Pw-Exp(A) Pw-Exp(B) 1.17 0.93 0.307 1.14 0.94 0.229 1.14 0.94 0.241 1.17 0.93 0.322
Weibull(1.25,2) Exp(1) 1.08 0.86 0.358 1.07 0.85 0.311 1.06 0.85 0.321 1.08 0.86 0.374
Exp(1) Weibull(1,0.5) 0.86 0.82 0.084 0.85 0.82 0.062 0.85 0.82 0.067 0.86 0.82 0.088

Note: ?Exponential, †Log-Normal, ‡Piecewise-Exponential.


