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Abstract

The Kaplan–Meier (KM) estimator, which provides a nonparametric estimate of a survival function

for time-to-event data, has broad applications in clinical studies, engineering, economics and many

other fields. The theoretical properties of the KM estimator including its consistency and asymptotic

distribution have been well established. From a new perspective, we reconstruct the KM estimator as

an M-estimator by maximizing a quadratic M-function based on concordance, which can be computed

using the expectation–maximization (EM) algorithm. It is shown that the convergent point of the

EM algorithm coincides with the traditional KM estimator, which offers a new interpretation of the

KM estimator as an M-estimator. As a result, the limiting distribution of the KM estimator can

be established using M-estimation theory. Application on two real datasets demonstrates that the

proposed M-estimator is equivalent to the KM estimator, and the confidence intervals and confidence

bands can be derived as well.

Keyword: Censored data; Confidence interval; Loss function; Nonparametric estimator; Survival

curve

1 Introduction

In clinical studies, time-to-event data often arise, which record the time of an individual from entry

into a study till the occurrence of an event of interest, such as the onset of illness, disease progression, or

death (Altman and Bland, 1998). In the past several decades, various methods have been developed for

survival analysis, including the Kaplan–Meier (KM) estimator (Kaplan and Meier, 1958), the log-rank test

(Mantel, 1966) and the Cox proportional hazards model (Cox, 1972; Breslow and Crowley, 1974). As one

of the most highly cited works with nearly 60,000 citations (Noorden et al., 2014), the KM estimator is

the standard approach to estimating the survival function for time-to-event data. Under the independence
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assumption of survival time and censoring time, the KM estimator is a step function with jumps only at

the observed event time points, which provides a nonparametric maximum likelihood estimator (NPMLE)

for the survival function (Johansen, 1978). By comparing the KM estimators of treatment and control

groups, treatment effects can be evaluated using the log-rank test or hazard ratio. In addition, the KM

estimator also has broad applications in other fields, such as engineering (Huh et al., 2011), economics

(Leclere, 2005) and sociology (Kaminski and Geisler, 2012).

As an NPMLE, the asymptotic theories of the KM estimator have been extensively studied in the

literature. The consistency of the KM estimator has been shown by Peterson (1977), and the large-sample

variance of the KM estimator at different time points was derived by Greenwood (1927). By estimating

the cumulative hazard function with the Nelson–Aalen estimator, the Breslow estimator (Breslow and

Crowley, 1974) has been shown to be asymptotically equivalent to the KM estimator. The KM estimator

has been shown to converge in law to a Gaussian process whose covariance function can be estimated using

Greenwood’s formula (Breslow and Crowley, 1974; Hall and Wellner, 1980). In the Bayesian paradigm,

the KM estimator has been shown to be the limit of a Bayes estimator of a squared-loss function with a

noninformative Dirichlet process prior (Susarla and Ryzin, 1976).

Inspired by the M-estimator of semiparametric regression models for censored data (Zhou, 1992; Jin,

2007), we propose an M-estimator for the survival function. When the L2 functional norm is used in the

M-function, we show that the M-estimator can be obtained recursively via the expectation–maximization

(EM) algorithm and the resultant estimator matches with the traditional KM estimator. Therefore, the

KM estimator can be reconstructed as a special case of M-estimators, and its large-sample variance and

limiting distribution are derived by M-estimation theory, together with the confidence intervals and confi-

dence bands. An application on two real datasets is presented which further demonstrates the equivalence

between the existing and M-estimation derivations.

2 Background

2.1 Kaplan–Meier Estimator of Survival Function

Let T1, . . . , Tn be independent and identically distributed (i.i.d.) survival times with a cumulative

distribution function F0 and survival function S0 = 1 − F0. Assume that censoring times C1, . . . , Cn are

i.i.d. from a distribution G0. The observed time of subject i is Xi = min(Ti, Ci) with a censoring indicator

∆i = I(Ti < Ci). As usual, independence is assumed between event time Ti and censoring time Ci for

i = 1, . . . , n.
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Let #{i : condition} denote the number of observations that meet the condition. When there is no

censoring (i.e., ∆i = 1 for all i), the survival function S0 is estimated by Ŝ(x) = #{i : Xi > x}/n, which is

one minus the empirical distribution function. Kaplan and Meier (1958) extended this estimator to the case

with censored observations. Let X(1) < · · · < X(K) be the K distinct observed event times, and then the

KM estimator is Ŝ(x) =
∏

k:X(k)≤x
[
1−#{i : Xi = X(k); ∆i = 1}/

(
#{i : Xi ≥ X(k)}

)]
, for 0 ≤ x ≤ X(K).

As a step function with jumps only at X(1) < · · · < X(K), the KM estimator can be interpreted as a product

limit estimator of conditional probabilities, which was shown to be weakly consistent and asymptotically

normal (Kaplan and Meier, 1958; Breslow and Crowley, 1974).

2.2 M-estimator

Consider i.i.d. vectors y1, . . . ,yn from a normal distribution N(θ, I), where I is an identity matrix. The

sample mean ȳ =
∑

yi/n is a natural estimator of θ. However, it is well-known that ȳ may perform poorly

in estimating θ if the data are originated from an unknown contaminated distribution. Inspired by the

fact that ȳ minimizes
∑
‖yi−θ‖2, Huber (1964) proposed the M-estimator θ̂ by minimizing an empirical

criterion function, θ̂ = arg maxθ∈ΘMn(θ) = arg maxθ∈Θ
∑n

i=1mθ(yi)/n, where Θ is the parameter space

and mθ(·) is the M-function. With different M-functions measuring different types of concordance θ

and observed data, various M-estimators such as maximum likelihood, least squares, and least absolute

deviation estimators, can be obtained. The asymptotic properties, including consistency and asymptotic

normality, have been studied (Huber, 1967; van der Vaart, 1998), whether θ is a parameter vector or

a functional of the distribution of y1, . . . ,yn. M-estimators have also been extensively investigated in

regression models (Koenker and Portnoy, 1990; de Menezes et al., 2021), survival analysis (Zhou, 1992;

Jin, 2007) and other areas.

3 M-estimator of Survival Function

3.1 M-estimator of Survival Function without Censoring

In the case with no censoring (i.e., ∆i = 1 for all i), we consider an M-function mS : S → R where

S = {S(x) : [0,∞) → [0, 1];S(x) is nonincreasing}. The M-estimator Ŝ(x) is obtained by maximizing a

criterion function, Ŝ(x) = arg maxS(x)∈SMn(S) = arg maxS(x)∈S n
−1
∑n

i=1mS(Xi). As the survival function

S(x) represents the probability P(X > x) for all x > 0, we adopt the L2 functional norm (or a quadratic
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norm) between the indicator function I(X > x) and the survival function S(x),

mS(X) =

∫ ∞
0

{
− I(X > x)2 + 2S(x)I(X > x)− S(x)2

}
dµ(x), (1)

where µ(x) is a cumulative probability function. Correspondingly, the empirical criterion function is

Mn(S) = n−1

n∑
i=1

∫ ∞
0

{
− I(Xi > x)2 + 2S(x)I(Xi > x)− S(x)2

}
dµ(x)

=

∫ ∞
0

[
−#{i : Xi > x}/n+ 2S(x)#{i : Xi > x}/n− S(x)2

]
dµ(x),

(2)

which measures the concordance between the data and the survival function S(x). Hence, the KM estimator

Ŝ(x) =
∏

k:X(k)≤x

#{i : Xi > X(k); ∆i = 1}
#{i : Xi ≥ X(k)}

=
#{i : Xi > x}

n
,

is the maximizer of Mn(S).

3.2 M-estimator of Survival Function with Censoring

When the data are subject to censoring, the M-function (2) is not applicable and thus the empirical

criterion function (2) cannot be used. For a censored observation {X,∆ = 0}, the only information

available is that the event of interest has not occurred prior to X, and the integration of the M-function

(1) is undefined in the interval (X,∞). We use a truncated L2 functional norm as the M-function for

observed survival data {X,∆},

m̃S(X,∆) =


mS(X), if ∆ = 1,∫ X

0

{
− I(X > x)2 + 2S(x)I(X > x)− S(x)2

}
dµ(x), if ∆ = 0.

To obtain the maximizer,

Ŝ(x) = arg max
S(x)∈S

M̃n(S) = arg max
S(x)∈S

n−1

n∑
i=1

m̃S(Xi,∆i), (3)

we apply the EM algorithm as follows.

• E-step: Given the estimator Ŝ(g)(x) at the gth iteration, compute the expectation of the empirical

criterion function Mn(S) by calculating the conditional probability that the event of interest occurs
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before x for all censored observations,

E{Mn(S)|Ŝ(g)} =
1

n

∑
∆i=1

∫ ∞
0

{
− I(Xi > x)2 + 2S(x)I(Xi > x)− S(x)2

}
dµ(x)

+
1

n

∑
∆i=0

∫ ∞
0

{
− Ŝ(g)(max(x,Xi))

Ŝ(g)(Xi)
+ 2S(x)

Ŝ(g)(max(x,Xi))

Ŝ(g)(Xi)
− S(x)2

}
dµ(x).

(4)

• M-step: Compute the estimator Ŝ(g+1)(x) by maximizing the expectation in (4),

Ŝ(g+1)(x) = arg max
S(x)∈S

E{Mn(S)|Ŝ(g)}. (5)

The validity of this EM algorithm is guaranteed by the next theorem.

Theorem 1. For all Ŝ(g)(x) ∈ S, the quantity E{Mn(S)|Ŝ(g)} − M̃n(S) is maximized when S = Ŝ(g).

Based on Theorem 1, we conclude that

M̃n(Ŝ(g+1)) = E{Mn(Ŝ(g+1))|Ŝ(g)} −
[
E{Mn(Ŝ(g+1))|Ŝ(g)} − M̃n(Ŝ(g+1))

]
≥ E{Mn(Ŝ(g))|Ŝ(g)} −

[
E{Mn(Ŝ(g))|Ŝ(g)} − M̃n(Ŝ(g))

]
= M̃n(Ŝ(g)),

and thus the M-estimator would be obtained at the convergent point of the EM algorithm.

Theorem 2. If Ŝ(0) is a nonincreasing right-continuous function with Ŝ(0)(0) = 1 and Ŝ(0)(x) = Ŝ(0)(X(K))

for all x ≥ X(K), the sequence of functions {Ŝ(g), g = 0, 1, . . .} with the recursive relationship in (5) satisfies

Ŝ(x) := lim
g→∞

Ŝ(g)(x) =
∏

k:X(k)≤x

(
1−

#{i : Xi = X(k); ∆i = 1}
#{i : Xi ≥ X(k)}

)
. (6)

In the proofs of both theorems in the Appendix, the EM algorithm is shown to converge to the KM

estimator by induction, implying that the KM estimator is an M-estimator in (3).

4 Asymptotic Properties of KM Estimator

By casting the KM estimator as an M-estimator, we can establish its asymptotic properties in the

framework of M-estimation theory as introduced in Section 2.2, including the consistency, asymptotic

normality, pointwise confidence intervals, and confidence bands.
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4.1 Consistency and Asymptotic Normality

Define

κx(X,∆) =

I(X > x), if ∆ = 1,

S0(max(x,X)){S0(X)}−1, if ∆ = 0.

Consequently, it holds that E{m̃S(X,∆)|S0} =
∫∞

0

{
− κx(X,∆) + 2S(x)κx(X,∆) − S(x)2

}
dµ(x) and

∂E{m̃S(X,∆)|S0}
/
∂S(x) = 2κx(X,∆)− 2S(x), for all x > 0.

Given that X = min(T,C) and ∆ = I(T < C) where T ∼ F0 = 1−S0 and C ∼ G0, it is straightforward

to show that E {κx(X,∆)} = S0(x) and E [∂E{m̃S(X,∆)|S0}/∂S(x)] = 2S0(x) − 2S(x), which equals 0

when S(x) = S0(x). Thus, S0(x) is the maximizer of M(S) = E[E{m̃S(X,∆)|S0}] in the space of survival

functions S. In addition, E{M̃n(S)|S0} =
∑n

i=1E{m̃S(Xi,∆i)|S0}/n converges almost surely to M(S)

by the law of large numbers. As a result, Ŝ(x) = arg max M̃n(S) converges to S0(x) in probability for all

x > 0, leading to the consistency of Ŝ(x).

If there exists XF where F0(XF ) < 1, we have that for 0 < x1 ≤ x2 < XF ,

E
{
κx1(X,∆)κx2(X,∆)

}
= S0(x2){1−G0(x1)}+ S0(x1)S0(x2)

∫ x1

0

{S0(u)}−1dG0(u)

by the conditional expectation formula. As a result, when S = S0, we have

E

[
∂E{m̃S(X,∆)|S0}

∂S(x1)

∂E{m̃S(X,∆)|S0}
∂S(x2)

]
=4S0(x1)S0(x2)

∫ x1

0

1

S2
0(1−G0)

d(1− S0),

E

[
∂2E{m̃S(X,∆)|S0}
∂S(x1)∂S(x2)

]
=− 2I(x1 = x2).

Thus, we have the joint asymptotic distribution of (Ŝ(x1), Ŝ(x2)) as

√
n

Ŝ(x1)− S0(x1)

Ŝ(x2)− S0(x2)

 D→N


0

0

 ,

 S0(x1)2

∫ x1

0

d(1− S0)

S2
0(1−G0)

S0(x1)S0(x2)

∫ x1

0

d(1− S0)

S2
0(1−G0)

S0(x1)S0(x2)

∫ x1

0

d(1− S0)

S2
0(1−G0)

S0(x2)2

∫ x2

0

d(1− S0)

S2
0(1−G0)


 .

(7)

Under the log-transformation, the pointwise asymptotic distribution of log Ŝ(x) is

√
n(log Ŝ(x)− logS0(x))

D→N

(
0,

∫ x

0

{S2
0(1−G0)}−1d(1− S0)

)
,

where the variance can be estimated by
∑

k:X(k)≤x ∆(k)

{(∑K
l=k n(l)

)(∑K
l=k n(l) − ∆(k)

)}−1
, with n(k) =

#{i : Xi = X(k)} and ∆(k) = #{i : Xi = X(k); ∆i = 1}.
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4.2 Comparison with Greenwood’s Formula

Greenwood’s formula (Greenwood, 1927) is the standard approach to computing the variance of Ŝ(x).

Taking the values S(X(1)), . . . , S(X(K)) into consideration, the likelihood function based on the observed

data is L(S) =
∏K

k=1{S(X(k−1))−S(X(k))}∆(k)S(X(k))
n(k)−∆(k) , where X(0) = 0, X(K+1) =∞. Decomposing

the survival process as K Bernoulli trials of surviving from X(k−1) to X(k) with success probability πk =

S(X(k))/S(X(k−1)) (k = 1, . . . , K), we have S(X(k)) =
∏k

l=1 πl and the likelihood function L(S) =
∏K

k=1(1−

πk)
∆(k)π

n(k)−∆(k)+
∑K

l=k+1 n(l)

k . As a result, the maximum likelihood estimator of πk is π̂k = 1−∆(k)

/
(
∑K

l=k n(l))

and the KM estimator is Ŝ(x) =
∏

k:X(k)≤x π̂k. Using the binomial formula, the variance of π̂k is var(π̂k) =

πk(1−πk)
/

(
∑K

l=k n(l)) and the covariance between π̂k and π̂l is cov(π̂k, π̂l) = 0 (k 6= l). Applying the delta

method, we have var(log π̂k) = (1− πk)
/

(πk
∑K

l=k n(l)) and

var(log Ŝ(x)) =
∑

k:X(k)≤x

var(log π̂k) =
∑

k:X(k)≤x

(1− πk)
/(

πk
∑K

l=k
n(l)

)
,

which is estimated by
∑

k:X(k)≤x(1− π̂k)
/

(π̂k
∑K

l=k n(l)) =
∑

k:X(k)≤x ∆(k)

/{(∑K
l=k n(l)

)(∑K
l=k n(l)−∆(k)

)}
.

The variance of Ŝ(x) can be calculated by applying the delta method one more time.

The estimated variance of Ŝ(x) deduced by M-estimation theory is the same as Greenwood’s formula.

However, there exist differences between our derivation and Greenwood’s formula: (1) Under Greenwood’s

formula, the variance of π̂k is obtained conditional on the quantity
∑K

l=k n(l) and thus the variance of

log Ŝ(x) is obtained conditional on the quantities
∑K

l=k n(l) for k ∈ {k : X(k) ≤ x}. The reason why Green-

wood’s formula is able to calculate the unconditional variance of log Ŝ(x) requires the application of mar-

tingale and empirical process theories and thus is non-trivial. In contrast, our derivation of the asymptotic

distribution of Ŝ(x) is a direct application of the M-estimation theory and thus is more straightforward.

(2) The derivation of the asymptotic distribution of Ŝ(x) is based on the delta method for Greenwood’s

formula, while our derivation only utilizes the law of large numbers and basic M-estimation theory.

4.3 Confidence Band

Because the M-estimator (3) and the asymptotic distribution (7) obtained by the EM algorithm and

the M-estimation theory coincide with the KM estimator and Greenwood’s formula, the asymptotic dis-

tribution of the process Ẑ(x) =
√
n{Ŝ(x) − S0(x)} (0 < x < XF ) with respect to the M-estimator

Ŝ(x) = arg maxS(x)∈S M̃n(S) converges weakly to a zero-mean Gaussian process Z(x) with covariance
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function

cov
{
Z(x1), Z(x2)

}
=

∫ x1

0

S0(x1)S0(x2)

S0(u)2{1−G0(u)}
d{1− S0(u)}, 0 < x1 ≤ x2 < XF ,

which is the same as the results in Breslow and Crowley (1974) and Hall and Wellner (1980). Let A(x) =∫ x
0
S0(u)−2{1−G0(u)}−1d{1−S0(u)}. Under the log-transformation, the process Ẑ∗(x) =

√
n{log Ŝ(x)−

logS0(x)} converges weakly to a zero-mean Gaussian process Z∗(x) with covariance function

cov
{
Z∗(x1), Z∗(x2)

}
=

∫ x1

0

d{1− S0(u)}
S0(u)2{1−G0(u)}

= A(x1), 0 < x1 ≤ x2 < XF .

That is, Ẑ∗(x) converges weakly to W (A(x)) where W (·) is the Wiener process. Because lim
x→∞

A(x) = ∞

and the confidence band of the process {W (x) : 0 < x <∞} is difficult to obtain, it is more convenient to

utilize the standard Brownian bridge to derive the confidence band. To connect Z∗(x) with the Brownian

bridge, we define H(x) = A(x)/{1 + A(x)} with H(0) = 0 and lim
x→∞

H(x) = 1, and H(x) = 1 for x ≥ XF .

As a result, we have

cov
{
Z∗(x1), Z∗(x2)

}
=

H(x1)

1−H(x1)
=

H(x1){1−H(x2)}
{1−H(x1)}{1−H(x2)}

,

which is the covariance function of the zero-mean Gaussian process B0(H(x))/{1−H(x)} (0 < x < XF )

and B0(·) is the standard Brownian bridge process on [0, 1]. With the constant

cα(a, b) = inf

{
c : P

(
sup
[a,b]

|B0(·)| ≤ c

)
≥ 1− α

}
, 0 < α < 1, 0 < a < b < 1,

the asymptotic 100(1− α)% confidence band of the survival function in the interval [x1, x2] ⊂ [0, XF ] is

[
Ŝ(x) exp

(
− cα(Ĥ(x1), Ĥ(x2))
√
n(1− Ĥ(x))

)
, Ŝ(x) exp

(
cα(Ĥ(x1), Ĥ(x2))
√
n(1− Ĥ(x))

)]
, x1 < x < x2,

where Ĥ(x) = 1−
[
1 +

∑
k:X(k)≤x n∆(k){(

∑K
l=k n(l))(

∑K
l=k+1 n(l))}−1

]−1

.

5 Real Data Application

To illustrate the equivalence of the KM estimator and our M-estimator under the L2 functional norm,

we present two real data examples. The first dataset is from the diabetic retinopathy study (DRS), where

197 high-risk patients were recruited to investigate the effect of laser treatment in preventing visual loss
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caused by diabetic retinopathy. on diabetic retinopathy (Huster et al., 1989). For each patient, one eye was

randomly chosen to receive the laser treatment and the other received no treatment, leading to n = 394

observations in total. The second dataset is from a lung cancer study involving the North Central Cancer

Treatment Group of 228 patients with advance lung cancer (Loprinzi et al., 1994). The event of interest

was death, and the study goal was to investigate whether patients’ self-assessment could provide additional

prognostic information to complement physicians’ assessment.

We apply the M-estimation using the EM algorithm to the time-to-event data with laser treatment and

control groups combined in the DRS and the lung cancer study. Figure 1 exhibits the convergence path

{Ŝ(g)(x)} and the KM estimator of the survival function. As the number of iterations g grows, the difference

between Ŝ(g)(x) and the KM estimator diminishes. The EM algorithm converged to the KM estimator in

50 iterations for the DRS example and 36 iterations for the lung cancer example. As shown in Figure 2,

the survival function estimators, the 95% confidence intervals and 95% confidence bands computed by the

M-estimation and the existing NPMLE approach for both datasets are exactly the same. The proposed

M-estimator sheds new light on the KM estimator as well as providing new theoretical development in the

M-estimation framework.

Figure 1: The convergence path (estimated survival curves) {Ŝ(g)(x), g = 1, 2, . . .} of the EM algorithm
and the KM estimator of the survival function for the diabetic retinopathy study with EM convergence at
50 iterations (left) and the lung cancer dataset with EM convergence at 36 iterations (right).
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Figure 2: The KM curves (red), 95% confidence intervals (blue) and 95% confidence bands (green) for
the diabetic retinopathy (left) and lung cancer datasets (right). Dashed lines for confidence intervals and
confidence bands are based on M-estimation, and solid lines are based on Greenwood’s formula.

6 Discussion

By casting the survival function estimation in the M-estimation framework, we reconstruct the celebrated

KM estimator as an M-estimator, which can be obtained recursively via the EM algorithm. When the

L2 functional norm is used as the M-function, we prove that the EM algorithm converges to the KM

estimator, implying that the KM estimator can be viewed as an M-estimator. The theoretical properties

of the KM estimator, including the large-sample variance and the limiting distribution, are re-established

using M-estimation theory. Simulation studies, which are omitted due to complete overlapping of the

estimated curves, demonstrate the exact equivalence relationship between the KM estimator and our M-

estimator, while the former has an explicit product limit estimator form and the latter is obtained using the

EM algorithm. Real data applications further corroborate that the reconstructed M-estimator under the

quadratic M-function is equivalent to the KM estimator and both the confidence intervals and confidence

bands coincide with those obtained using Greenwood’s formula.

As the KM estimator is an M-estimator under the L2 functional norm, it is possible to develop other M-

estimators of the survival function under different M-functions. One possible M-estimator is the maximum

Lq-likelihood estimator (Ferrari and Yang, 2010) with the Lq-likelihood as the M-function. Because the

KM estimator is a special case of the maximum Lq-likelihood estimator for q = 1, it is possible to use the

Lq-likelihood to reduce bias in estimating the survival function for small samples. For example, under the

Lq-likelihood in Ferrari and Yang (2010), if q > 1 (q < 1), more (less) weights would be assigned to later
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events in the M-function, leading to a smaller mean squared error in estimating S0(x) for larger (smaller)

x. Moreover, the M-estimation framework sheds new light on other problems in survival analysis, such as

comparison of multiple survival curves and the Cox regression analysis with covariates.
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Appendix

Proof of Theorem 1

By the definition of E{Mn(S)|Ŝ(g)}, we can deduce that

n
[
E{Mn(S)|Ŝ(g)} − M̃n(S)

]
=
∑
∆i=0

∫ ∞
Xi

{
− Ŝ(g)(x)

Ŝ(g)(Xi)
+ 2S(x)

Ŝ(g)(x)

Ŝ(g)(Xi)
− S(x)2

}
dµ(x)

=
∑
∆i=0

∫ ∞
Xi

−
{
S(x)− Ŝ(g)(x)

Ŝ(g)(Xi)

}2

dµ(x) +
∑
∆i=0

∫ ∞
Xi

Ŝ(g)(x)2

Ŝ(g)(Xi)2
dµ(x)−

∑
∆i=0

∫ ∞
Xi

Ŝ(g)(x)

Ŝ(g)(Xi)
dµ(x).

Note that n
[
E{Mn(S)|Ŝ(g)}−M̃n(S)

]
consists of three terms, with the latter two terms irrelevant to S(x),

and the first term is maximized if and only if S(x) = Ŝ(g)(x) by the Cauchy–Schwarz inequality.

Proof of Theorem 2

Recall that n(k) = #{i : Xi = X(k)} and ∆(k) = #{i : Xi = X(k); ∆i = 1}. We have for g = 1, 2, . . .,

E{Mn(S)|Ŝ(g−1)} =
1

n

K∑
k=1

∫ ∞
0

∆(k)

{
− I(X(k) > x)2 + 2S(x)I(X(k) > x)− S(x)2

}
dµ(x)

+
1

n

K∑
k=1

∫ ∞
0

(n(k) −∆(k))

{
−
Ŝ(g−1)(max(x,X(k)))

Ŝ(g−1)(X(k))
+ 2S(x)

Ŝ(g−1)(max(x,X(k)))

Ŝ(g−1)(X(k))
− S(x)2

}
dµ(x).

Hence,

Ŝ(g)(x) = arg max
S(x)∈S

E{Mn(S)|Ŝ(g−1)} =
1

n

K∑
k=1

{
∆(k)I(X(k) > x) + (n(k) −∆(k))

Ŝ(g−1)(max(x,X(k)))

Ŝ(g−1)(X(k))

}
.
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If Ŝ(g−1) is a nonincreasing right-continuous function with Ŝ(g−1)(0) = 1, it is clear that I(X(k) > x) and

Ŝ(g−1)(max(x,X(k))){Ŝ(g−1)(X(k))}−1 are both nonincreasing right-continuous and thus Ŝ(g) is a nonincreas-

ing right-continuous function with Ŝ(g)(0) = 1. Given Ŝ(0) is a nonincreasing right-continuous function

with Ŝ(0)(0) = 1, by induction, Ŝ(x) is a nonincreasing right-continuous function with Ŝ(0) = 1.

• For all x ∈ [0, X(1)), it is obvious that Ŝ(g)(x) = 1 for g = 0, 1, . . . and equation (6) holds.

• We then prove that equation (6) holds at x = X(1), . . . , X(K).

– It is clear that for g = 0, 1, . . .,

Ŝ(g)(X(1)) =
1

n

{
K∑
k=1

(n(k) −∆(k)) +
K∑
k=2

∆(k)

}
= 1−

∆(1)∑K
k=1 n(k)

= 1−
#{i : Xi = X(1); ∆i = 1}

#{i : Xi ≥ X(1)}

and (6) holds at x = X(1).

– Suppose that (6) holds at x = X(l−1) (l = 2, . . . , K). If Ŝ(X(l−1)) = 0, then Ŝ(X(l)) = 0 and (6)

holds at x = X(l). If Ŝ(X(l−1)) 6= 0, by the convergence condition of the EM algorithm,

Ŝ(x) = arg max
S(x)∈S

E{Mn(S)|Ŝ} =
1

n

K∑
k=1

{
∆(k)I(X(k) > x)+(n(k)−∆(k))

Ŝ(max(x,X(k)))

Ŝ(X(k))

}
, (8)

we have

Ŝ(X(l))

Ŝ(X(l−1))
=
n(l) −∆(l) +

∑K
k=l+1 n(k) + Ŝ(X(l))

∑l−1
k=1 (n(k) −∆(k))/Ŝ(X(k))∑K

k=l n(k) + Ŝ(X(l−1))
∑l−1

k=1 (n(k) −∆(k))/Ŝ(X(k))
.

It is clear that

Ŝ(X(l))

Ŝ(X(l−1))
=
n(l) −∆(l) +

∑K
k=l+1 n(k)∑K

k=l n(k)

= 1−
∆(l)∑K
k=l n(k)

= 1−
#{i : Xi = X(l); ∆i = 1}

#{i : Xi ≥ X(l)}

and equation (6) holds at x = X(l).

• Finally, we prove that equation (6) holds for x ∈ (X(l−1), X(l)) (l = 2, . . . , K) and for x ∈ (X(K),∞).

– For x ∈ (X(l−1), X(l)) (l = 2, . . . , K), if Ŝ(X(l−1)) = 0, then Ŝ(x) = 0 and (6) holds; otherwise,

by the convergence condition (8) of the EM algorithm, we have

Ŝ(x)

Ŝ(X(l−1))
=
n(l) −∆(l) +

∑K
k=l+1 n(k) + Ŝ(x)

∑l−1
k=1 (n(k) −∆(k))/Ŝ(X(k))∑K

k=l n(k) + Ŝ(X(l−1))
∑l−1

k=1 (n(k) −∆(k))/Ŝ(X(k))
,

implying that Ŝ(x)/Ŝ(X(l−1)) = 1. Thus, equation (6) holds.
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– For x ∈ (X(K),∞), if Ŝ(X(K)) = 0, then Ŝ(x) = 0 and (6) holds; otherwise, for g = 1, 2, . . .,

Ŝ(g)(x)

Ŝ(g)(X(K))
=

∑K
k=1(n(k) −∆(k))Ŝ

(g−1)(x)∑K
k=1(n(k) −∆(k))Ŝ(g−1)(X(K))

=
Ŝ(g−1)(x)

Ŝ(g−1)(X(K))
= · · · = Ŝ(0)(x)

Ŝ(0)(X(K))
= 1.

Therefore, Ŝ(x)/Ŝ(X(K)) = limg→∞ Ŝ
(g)(x)/Ŝ(g)(X(K)) = 1, and equation (6) holds.
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