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Panel count data typically refer to data arising from studies with recurrent events, in which subjects are observed
only at discrete time points rather than under continuous observations. We investigate a general situation where
a recurrent event process is eventually truncated by an informative terminal event and we are particularly inter-
ested in behaviors of the recurrent event process near the terminal event. We propose a reversed mean model
for estimating the mean function of the recurrent event process. We develop a two-stage sieve likelihood-based
method to estimate the mean function, which overcomes the computational difficulties arising from a nuisance
functional parameter involved in the likelihood. The consistency and the convergence rate of the two-stage estima-
tor are established. Allowing for the convergence rate slower than the standard rate, we develop the general weak
convergence theory of M -estimators with a nuisance functional parameter, and then apply it to the proposed esti-
mator for deriving the asymptotic normality. Furthermore, a class of two-sample tests is developed. The proposed
methods are evaluated with extensive simulation studies and illustrated with panel count data from the Chinese
Longitudinal Healthy Longevity Study.
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1. Introduction

Panel count data often arise in many applied fields, for example, econometrics, epidemiology,
medicine, public health, and reliability. As a special type of recurrent event data, the event process of
panel count data is observed at finite distinct time points. Only the number of recurrent events that have
occurred between the observation times is known and the times of event occurrences are not recorded.
In many panel studies, the follow-up of subjects may be truncated by a terminal event which is likely
to be associated with accumulation of recurrent events. For example, death is the terminal outcome
of the worsening of serious illness which is often manifested as disease recurrences, and panel count
data of this format are abundant in biomedical research. In a bladder cancer study conducted by the
Veterans Administration Cooperative Urological Research Group of U.S.A. (Andrews and Herzberg,
1985), observed data include the clinical visit times or observation times and the numbers of recur-
rent tumors between clinical visits for all patients in the three treatment groups, i.e., placebo, thiotepa,
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and pyridoxine. The follow-up of patients was truncated by death, which led to panel count data with
the terminal event of death. As another example, the Chinese Longitudinal Healthy Longevity Study
(CLHLS) collected information on health status and quality of elderly individuals from 22 provinces
in China; refer to Zeng et al. (2017) for a detailed description. One of the study objectives was to iden-
tify the major factors contributing to human health and longevity. The CLHLS conducted face-to-face
interviews with 9093 individuals aged 77 or older on random days in 1998 as the baseline wave, with
follow-up waves in 2000, 2002, 2005, 2008, 2011 and 2014, respectively. During the study period,
more than 90% of the participants experienced serious illness at least once and some died or were lost
to follow-up. Taking the occurrences of serious illness as the outcome of interest, only the numbers of
such events between the waves were observed for each individual, while the exact times of these event
occurrences were not tracked. Due to the lack of information on the precise timing of serious illness
events, the event counts could be viewed as panel count data truncated by death. Investigators were
particularly interested in learning the progression of serious illness prior to death.

For the analysis of panel count data with no terminal event, many methods have been developed,
including parametric approaches (e.g., Kalbfeisch and Lawless, 1985; Hinde, 1982; Breslow, 1984;
and Thall, 1988), nonparametric estimation procedures (e.g., Sun and Kalbfeisch, 1995; Wellner and
Zhang, 2000; Hu et al., 2009; Zhang and Jamshidian, 2003; Huang et al., 2006; Lu et al., 2007),
nonparametric testing methods (e.g., Thall and Lachin, 1988; Sun and Fang, 2003; Zhang, 2006; Bal-
akrishnan and Zhao, 2009; Zhao and Zhang, 2017), and semiparametric and nonparametric regression
models (e.g., Cheng and Wei, 2000; Sun and Wei, 2000; Hu et al., 2003; Huang et al., 2006; Wellner
and Zhang, 2007; Lu et al., 2009; Zhao et al., 2019; Ma and Sundaram, 2018). However, the aforemen-
tioned methods cannot handle a more complicated but realistic situation in biomedical studies where
a recurrent event process is truncated by a terminal event. There exists limited research to take into
account the effect of a terminal event in the panel count data. In particular, two classes of methods
have been proposed: joint modeling through frailty variables (e.g., Huang and Wang, 2004; Zeng and
Cai, 2010; Sun et al., 2012; Zhou et al., 2017; Diao, Zeng et al., 2017) and marginal modeling by the
inverse probability weighting technique (e.g., Zhao et al., 2011; Zhao et al., 2013). The first approach
is robust but cannot clearly reveal the relationship between the recurrent event process and the termi-
nal event through shared unknown latent variables, which thus does not emphasize on the behavior of
the recurrent event process near the informative terminal event. The second one may be inappropriate
when a terminal event such as death truncates the recurrent event process.

There has been limited research studying the stochastic process behavior near a terminal event with
application to ascertaining the quality of life and medical cost near death (e.g. Chan and Wang, 2010;
Li et al., 2013). To the best of our knowledge, no method has been proposed to model the recurrent
event process near a terminal event for studying the direct relationship between the terminal event and
the recurrent event process based on panel count data. Our goal is to develop new inference procedures
for panel count data truncated by a terminal event by modeling recurrent events reversely from the
terminal event, which allows us to focus more on the behavior of recurrent events near the terminal
event. For this purpose, we propose a reversed mean model which can intuitively and clearly explain
the relationship between the recurrent event process and the terminal event.

The main contributions of this work are fourfold. First, we propose a reversed mean model anchor-
ing at a terminal event to characterize the explicit relationship between a recurrent event process and a
terminal event. Second, we develop a two-stage nonparametric sieve likelihood-based estimation pro-
cedure by treating the survival function of the terminal event as a nuisance functional parameter. Third,
we establish the asymptotic properties of the proposed estimator and, in particular, we develop a gen-
eral theorem for the asymptotic normality of nonparametric M-estimators with a nuisance functional
parameter when estimators have a convergence rate slower than the standard rate n−1/2. Fourth, we
propose a class of nonparametric tests for comparing mean functions of recurrent event processes with
panel count data in the presence of an informative terminal event.
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The rest of this paper is organized as follows. In Section 2, we propose a reversed mean model
anchoring at a terminal event for a recurrent event process, and develop a two-stage estimation proce-
dure. In Section 3, we establish the asymptotic properties including the consistency, the convergence
rate, and the asymptotic normality of nonparametric M -estimators with a nuisance functional param-
eter. A class of nonparametric two-sample tests are developed for nonparametric comparison of mean
functions in Section 4. In Section 5, we conduct simulation studies to assess the performance of the
proposed estimators and testing procedure. Section 6 reports the analysis results of the CLHLS data,
and Section 7 concludes with some remarks. The lemmas and proofs of theorems are given in Section
8, while the proofs of the lemmas are provided in the supplementary materials.

2. Methodology

2.1. Model setting

In a study involving recurrent events, suppose that each subject yields a counting process N(t), de-
noting the total number of occurrences of the event of interest up to time t, 0 ≤ t ≤ τ , where τ is a
known constant time point. In general, not every subject can be followed up to τ due to censoring. In
a more complicated but common situation, for each subject there exists a terminal event such as death
which may truncate the follow-up prior to τ . Let U denote the time of the terminal event which can
truncate the counting process N(·), and let C denote the censoring time for (U,N(·)) after which nei-
ther the counting process nor the terminal event is observable. Suppose that N(·) can only be observed
at discrete observation times 0< TK,1 < · · ·< TK,K , where the total number of observations K is an
integer-valued random variable. Define Y = U ∧ C, where a ∧ b = min(a, b). Let ∆ = 1{U≤C} be a
censoring indicator, let T = (TK,1, . . . , TK,K) be panel observation times on the counting process, and
let N = (N1, . . . ,NK) =

(
N(TK,1), . . . ,N(TK,K)

)
denote the cumulative event counts correspond-

ing to T . The observed data consist of i.i.d. copies of D = (Y,∆,N,T ,K).
Chan and Wang (2010, 2017) proposed backward stochastic models to study the terminal behavior of

recurrent event processes. Kong et al. (2018) treated a terminal event time as a covariate in regression
analysis of longitudinal data. Motivated by the aforementioned work, we propose a reversed mean
model for nonparametric inference based on panel count data with an informative terminal event. Our
model can directly reflect the effect of a terminal event on a recurrent event process, which has not
been investigated in the literature of panel count data.

For ascertaining the behavior of the counting process near the terminal event time U , we study the
reversed counting process Ñ(t;U), the event count from time t to U , with the reversed mean model,

E(Ñ(t;U)|U = u) = Λ(u− t), (1)

where Λ(·) is a nondecreasing function with Λ(0) = 0. To gain more insight into the model, we plot
in Figure 1 the reversed conditional mean functions Λ(U − t) with Λ(t) = 8{1− exp(−t)} for three
randomly chosen times of the terminal event assuming U ∼Uniform(2,4). It shows that the expected
number of recurrent events from a fixed time t to the terminal event increases as it prolongs.

Because Ñ(t;U) may not be observable at some t due to censoring, model (1) is not directly appli-
cable for estimating Λ(·) using the observed panel count data. Noting that N(t) = Ñ(0;U)− Ñ(t;U),
we have

E(N(t)|U = u) = Λ(u)−Λ(u− t)
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Figure 1. Plots of three trajectories of the reversed conditional mean function Λ(U − t) in (1).

and this model facilitates a nonparametric maximum likelihood estimation method to study the reversed
mean function with panel count data truncated by a terminal event following Wellner and Zhang (2000)
and Lu et al. (2007).

To develop a valid estimation procedure, we assume: (i) U and C are independent; (ii) The distri-
bution of the censoring time C is non-informative to Λ; (iii) The distribution of (K,T ) is also non-
informative to Λ. Model (1) automatically implies that Ñ(·) and U are not independent. The goal of
our proposed model is to directly quantify the behavior of the recurrent events near the informative
terminal event.

2.2. Two-stage sieve likelihood-based estimation procedure

Let4Nj =N(TK,j)−N(TK,j−1),4N = (4N1, . . . ,4NK) with realization4n= (4n1, . . . ,4nK),
where4nj = nj−nj−1, and t= (tK,1, . . . , tK,K). Assume that our working model forN(t) is a non-
homogeneous Poisson process with the mean function Λ(u)−Λ(u− t) given the process is truncated
by the terminal event occurred at U = u, then

P (4N =4n|U = u,K,T = t) =

K∏
j=1

exp(−4Λj(u))(4Λj(u))4nj

(4nj)!
,

where tK,0 ≡ 0, n0 ≡ 0, and for j ≥ 1, 4Λj(u) = Λ(u− tK,j−1)− Λ(u− tK,j). Since the terminal
event is subject to censoring, this conditional probability cannot be immediately used for constructing
the likelihood function of the observed data D. The censored terminal event time, however, can be
integrated out from the likelihood if we facilitate a distribution for U (e.g. Kong et al., 2018). Under
this working model, the likelihood of (Λ, F ) for the i.i.d. sample D = {Di : i= 1, . . . , n} is

Ln(Λ, F ;D) =

n∏
i=1

 Ki∏
j=1

(
4Λi,j(Yi)

)4Ni,j exp
(
−4Λi,j(Yi)

)
4Ni,j !

f(Yi)

∆i
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×

∫ ∞
Yi

Ki∏
j=1

(
4Λi,j(u)

)4Ni,j exp
(
−4Λi,j(u)

)
4Ni,j !

dF (u)

1−∆i

,

where TKi,0 ≡ 0, 4Ni,j = Ni(TKi,j) − Ni(TKi,j−1), and 4Λi,j(u) = Λ(u − TKi,j−1) − Λ(u −
TKi,j). The log-likelihood of (Λ, F ) is

ln(Λ, F ;D) =
1

n

n∑
i=1

∆i

Ki∑
j=1

{
4Ni,j log(4Λi,j(Yi))−4Λi,j(Yi)

}

+(1−∆i) log


∫ ∞
Yi

Ki∏
j=1

(
4Λi,j(u)

)4Ni,j exp
(
−4Λi,j(u)

)
4Ni,j !

dF (u)


 ,

after omitting the term log f(Yi) and the part unrelated to (Λ, F ).
We denote the true values of Λ(u) and4Λj(u) as Λ0(u) and4Λ0j(u), respectively. And let f0 and

F0 denote the density and cumulative distribution functions of U , respectively. Clearly, joint estimation
of Λ0 and F0 is a daunting problem in view of the complicated likelihood structure. We consider a two-
stage estimation procedure in the spirit of pseudo-likelihood estimation as described below.

Stage 1: Obtain the Kaplan–Meier estimator of F0, F̂n(t), based on {(Yi,∆i), i= 1, . . . , n}.
Stage 2: Derive the log pseudo-likelihood of Λ as ln(Λ, F̂n;D) := ln(Λ;D).

Considering the complexity of ln(Λ;D), we propose to estimate the smooth function Λ0 using B-
spline function approximation (Lu, Zhang and Huang, 2007). Let T = {ti, i= 1, . . . ,mn + 2l}, with
0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ, be a sequence of knots
that partition [0, τ ] into mn + 1 subintervals Ii = [tl+i, tl+i+1], for i = 0,1, . . . ,mn. Let Φn be a
class of polynomial splines of order l ≥ 1 with the knot sequence T , and thus Φn can be linearly
spanned by the normalized B-spline basis functions {Bi, i = 1, . . . , qn} with qn = mn + l (Schu-

maker, 2007). Define a subclass of Φn: Ψn =

{∑qn
i=1αiBi : 0≤ α1 ≤ · · · ≤ αqn ,

qn∑
i=1

αiBi(0) = 0

}
.

These constraints sufficiently warrant that Λ(t) =
∑qn
i=1αiBi(t) is non-decreasing and Λ(0) = 0. The

constraints 0 ≤ α1 ≤ . . . ≤ αn are required to guarantee the non-decreasing property of Λ and the

constraint
qn∑
i=1

αiBi(0) = 0 implies α1 = 0 as (B1(0), . . . ,Bqn(0)) = (1,0, . . . ,0).

The estimator Λ̂n of Λ0 maximizes ln(Λ;D) over Λ ∈Ψn, and the spline pseudo-likelihood estima-
tor of Λ0 is denoted by Λ̂n =

∑qn
i=1 α̂iBi.

3. Asymptotic Results

3.1. Consistency and convergence rate

Let g(r) denote the r-th derivative function of g, and let Mj , j = 0,1, . . . ,5, and c denote different
constants throughout the paper. Define F = {F : F is a distribution function on [0,∞)},

Hr = {g : |g(r−1)(s)− g(r−1)(t)| ≤ c|s− t|, any 0≤ s < t <∞, r ≥ 1},
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and Ψ = {Λ : Λ is an increasing function on [0, τ ],Λ(0) = 0,Λ ∈Hr}.

Let B denote a collection of Borel sets inR, and let B[0,τ ] = {B
⋂

[0, τ ] :B ∈ B}. Define the measure
µ1 on ([0, τ ]2,B2

[0,τ ]) by

µ1(B1 ×B2)

=

∫ ∞
0

 ∞∑
k=1

P (K = k|U = u)

k∑
j=1

P (u− Tk,j−1 ∈B1, u− Tk,j ∈B2|K = k,U = u)

dF0(u),

for B1,B2 ∈ B[0,τ ], and the metric d1 on Ψ by

d2
1(Λ1,Λ2) =

∫∫ ∣∣(Λ1(t)−Λ1(s)
)
−
(
Λ2(t)−Λ2(s)

)∣∣2dµ1(s, t)

for Λ1,Λ2 ∈Ψ. Also define the measure µ2 on ([0, τ ],B[0,τ ]) as

µ2(B) =

∫ ∞
0

∞∑
k=1

P (K = k|U = u)

k∑
j=1

P (u− Tk,j ∈B|K = k,U = u)dF0(u), forB ∈ B[0,τ ].

To establish the asymptotic properties of the proposed estimator, we need the following regularity
conditions.

(C1) Λ0 ∈Ψ with 0< Λ0(τ)<∞; P
( K⋂
j=1

{
U − TK,j ∈ [0, τ ]

})
= 1.

(C2) P (Y < U) =M1 for 0<M1 < 1.
(C3) There is a positve constant c such that E

(
ecN(τ)

)
<∞.

(C4) There is some 0< u0 < τ such that the support of the terminal event time U is [u0, τ ]. The time
has a density f0 with respect to Lebesgue measure which has a version which is continuous on
[u0, τ ] and there is a constant M2 > 0 such that for all u ∈ [u0, τ ] we have f0(u)≥M2.

(C5) There exists a constant M3 > 0 such that P (C ≥ τ) =M3.

(C6) qn =O(nν) with 0< ν < 1/2, max
i
|ti− ti−1|=O(n−ν) and

max
i
|ti − ti−1|

min
i
|ti − ti−1|

≤M4 uniformly

for n, where ti, i= l, . . . ,mn + l+ 1 are the partition knots of interval [0, τ ].
(C7) The observation time points are s0-separated, i.e., there exists a constant s0 > 0 such that

P (TK,j−TK,j−1 ≥ s0 for all j = 1, . . . ,K) = 1. Furthermore, µ2 is absolutely continuous with
respect to the Lebesgue measure with a derivative µ̇2(t) ≥M5 > 0 for some positive constant
M5.

(C8) The true baseline function Λ0 is differentiable and its derivative has positive and finite lower
and upper bounds in the observation interval, i.e., there exists a constant 1<M0 <∞ such that
1/M0 ≤ Λ̇0(t)≤M0 for t ∈ [0, τ ].

Condition (C1) indicates that the observation times are separated from the time origin and the residual
time U −T falls into an observed time interval. (C2) is a regular one for survival data meaning that the
censoring rate falls between 0 and 1. Condition (C3) can be satisfied if the process N(t) is uniformly
bounded or it is a Poisson or mixed Poisson process. Condition (C4) on the distribution of the terminal
event time can be satisfied by most continuous random variables. Condition (C5) is mild technical
conditions for the proof. Condition (C6) is required to ensure the approximation for the monotone



Reversed Mean Models with Panel Count Data 7

function by Lu, Zhang and Huang (2007, 2009). Conditions (C7) and (C8) are technical ones similar
to (C11) and (C12) of Wellner and Zhang (2007). The first part of (C7) and (C8) can yield P (c1 ≤
Λ0(Y −TK,j−1)−Λ0(Y −TK,j)≤ c2, j = 1, . . . ,K) = 1 for two positive constants c1 and c2, which
is needed to derive the asymptotic properties of the proposed estimator. The second part of (C7) is used
in the proofs of Lemma 3 and Theorems 1 and 2. Serving as the technical conditions for proving the
theorems, they are quite reasonable in view of real data applications. Condition (C7) simply implies
that the adjacent observations should be minimally separated in time and Condition (C8) implies that
the process Ñ(·) has a jump with a non-zero probability at any time prior to the terminal event.

Based on the asymptotic properties of the Kaplan–Meier (KM) estimator, we can derive the con-
sistency and the convergence rate of the two-stage estimator Λ̂n by extending the empirical process
theories for M -estimators to those with a nuisance functional parameter.

Theorem 1 (Consistency of Λ̂n) Under Conditions (C1)–(C8), it holds that d1(Λ̂n,Λ0)→ 0 almost
surely.

Theorem 2 (Convergence rate of Λ̂n) Under Conditions (C1)–(C8), for any r > 1, we have d1(Λ̂n,Λ0) =

Op(n
−r/(1+2r)).

Theorem 2 shows that the convergence rate of the nonparametric two-stage estimator Λ̂n reaches
n−r/(1+2r) for any r > 1, which is slower than n−1/2 but faster than n−1/3.

3.2. Asymptotic theory of nonparametric M-estimators with a nuisance
functional parameter

Suppose that X = (X1, . . . ,Xn) is a random sample from the distribution of X , and ln(Λ, F ;X) =∑n
i=1m(Λ, F ;Xi) is an objective function based on X, where Λ is an unknown function in the class

Ψ, and F is a nuisance functional parameter. Let Ψn be the sieve parameter space satisfying Ψn ⊆
Ψn+1 ⊆ · · · ⊆Ψ, for n≥ 1. Assume that F̂n is a consistent estimator of F and Λ̂n is the estimator of
Λ0 by maximizing ln(Λ, F̂n;X) in the sieve parameter space Ψn.

Let H be a space containing Ψ, and l∞(H) be the space of bounded functionals on H under the
supremum norm ||f ||∞ = sup

h∈H
|f(h)|. For h ∈ H, we define a sequence of maps Gn in the parameter

space for (Λ, F ) to l∞(H) as the derivative of n−1ln(Λ, F ;X) with respect to Λ in the direction h:

Gn(Λ, F )[h] =n−1 lim
δ→0

ln(Λ + δh,F ;X)− ln(Λ, F ;X)

δ

=n−1
n∑
i=1

lim
δ→0

m(Λ + δh,F ;Xi)−m(Λ, F ;Xi)

δ

=Pnm1(Λ, F ;X)[h]

and define G(Λ, F )[h] = Pm1(Λ, F ;X)[h], where P and Pn denote the probability measure and em-
pirical measure with Pf =

∫
fdP and Pnf = n−1∑n

i=1 f(Xi), respectively.
To establish the asymptotic normality, we need the following conditions.

(B1)
√
n(Gn −G)(Λ̂n, F̂n)[h]−

√
n(Gn −G)(Λ0, F0)[h] = op(1);

(B2) G(Λ0, F0)[h] = 0 and Gn(Λ̂n, F̂n)[h] = op(n
−1/2);

(B3) G(Λ, F )[h] is Fréchet-differentiable with respect to Λ and F with the continuous derivatives
Ġ1,Λ,F [h] and Ġ2,Λ,F [h], respectively;
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(B4) G(Λ̂n, F̂n)[h]−G(Λ0, F0)[h]− Ġ
1,Λ0,F̂n

(Λ̂n−Λ0)[h]− Ġ2,Λ0,F0
(F̂n−F0)[h] = op(n

−1/2);

(B5)
√
n(Gn −G)(Λ0, F0)[h] +

√
nĠ2,Λ0,F0

(F̂n −F0)[h] converges in distribution to a tight Gaus-
sian process on l∞(H).

Remark 1 Conditions (B2), (B3) and (B5) are analogous to the analytical conditions in Theorem 3.3.1
of van der Varrt and Wellner (1996); (B1) and (B4) mean the remainders of the Taylor expansions are
negligible, which are weaker than those in van der Varrt and Wellner (1996).

Theorem 3 (General functional asymptotic normality) Under Assumptions (B1)–(B5), for any h ∈H,
we have

−
√
nĠ

1,Λ0,F̂n
(Λ̂n −Λ0)[h] =

√
nĠ2,Λ0,F0

(F̂n − F0)[h] +
√
n(Gn −G)(Λ0, F0)[h] + op(1),

and −
√
nĠ

1,Λ0,F̂n
(Λ̂n −Λ0)[h] converges in distribution to a tight Gaussian process on l∞(H).

Remark 2 Theorem 3.3.1 of van der Varrt and Wellner (1996) implies that the estimator has a con-
vergence rate of n−1/2, while Theorem 3 allows the order of Λ̂n to be slower than n−1/2. Theorem
3 states a general functional asymptotic normality property for the nonparametric M -estimator with
a nuisance parameter, which extends Theorem 1 in Zhao and Zhang (2017) to more practical cases.
As an application, we derive the asymptotic normality of the two-stage functional estimator for panel
count data truncated by a terminal event.

3.3. Asymptotic normality of functionals of two-stage nonparametric
M-estimators for panel count data

The next theorem is obtained by applying Theorem 3 to the proposed estimator.

Theorem 4 Under Conditions (C1)–(C8), for any h ∈Hr, we have

√
nP

∆

K∑
j=1

∆Λ̂nj(Y )−4Λ0j(Y )

4Λ0j(Y )
hj(Y ) + (1−∆)

{∫ τ

Y
S0(u)dF̂n(u)

}−2

×
∫ τ

Y
S0(u)

K∑
j=1

{ 4Nj
4Λj(u)

− 1

}
hj(u)dF̂n(u)

×
∫ τ

Y
S0(u)

K∑
j=1

{ 4Nj
4Λj(u)

− 1

}
{∆Λ̂nj(u)−4Λ0j(u)}dF̂n(u)

 d−→N(0, σ2
1 [h]),

where ∆Λ̂nj(u) = Λ̂n(u− Tj−1)− Λ̂n(u− Tj), ∆Λ0j(u) = Λ0(u− Tj−1)−Λ0(u− Tj), S0(u) =
K∏
j=1
{4Λ0j(u)}4Nj exp{−4Λ0j(u)}/{4Nj !}, and σ2

1 [h] is given in the proof of Theorem 4.

Theorem 4 plays a key role for constructing new statistics for multi-sample nonparametric compari-
son of panel count data truncated by a terminal event.
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4. Nonparametric Tests

Consider n independent subjects from J groups with n1 + · · ·+ nJ = n, where nr is the sample size
of the rth group. Let Ñ (r)(t;U) denote the reversed counting process from a terminal event time U
for group r, r = 1, . . . , J, that subjects to panel observations. Suppose that E(Ñ (r)(t;U)|U = u) =
Λr(u − t) with Λr(0) = 0, r = 1, . . . , J . The problem of interest is to test the null hypothesis H0 :
Λ1 = Λ2 = · · ·= ΛJ = Λ0. We illustrate the test for two-sample comparison which can be extended to
J-sample comparison by using similar ideas in Zhang (2006) and Balakrishnan and Zhao (2009).

Let Λ̂r denote the two-stage sieve likelihood-based estimator of Λr based on the data in the rth group
for r = 1,2, and let Λ̂0 be the two-stage sieve likelihood-based estimator of Λ0 based on the pooled
data. Using the same notation as in Section 2.2, we denote 4Λr,i,j(u) = Λr(u− TKi,j−1)−Λr(u−
TKi,j) for r = 0,1,2, and let 4Λ̂r,i,j(u) be the corresponding two-stage estimators. For testing the
hypothesisH0, our method is motivated by the asymptotic results in Theorem 4 and an idea commonly
used in survival analysis, such as Anderson et al. (1993), Zhang (2006), Balakrishnan and Zhao (2009)
and Zhao and Zhang (2017). More specifically, we propose the test statistic as

Qn =
1√
n

n∑
i=1

[
∆i

Ki∑
j=1

hn,i,j(Yi)
4Λ̂1,i,j(Yi)−4Λ̂2,i,j(Yi)

4Λ̂0,i,j(Yi)

+ (1−∆i)
{∫ τ

Yi

Ŝ0(u)dF̂n(u)
}−2

∫ τ

Yi

Ŝ0(u)

Ki∑
j=1

hn,i,j(u)
{ 4Ni,j
4Λ̂0,i,j(u)

− 1
}
dF̂n(u)

×
∫ τ

Yi

Ŝ0(u)

Ki∑
j=1

{ 4Ni,j
4Λ̂0,i,j(u)

− 1
}{
4Λ̂1,i,j(u)−4Λ̂2,i,j(u)

}
dF̂n(u)

]
,

where Ŝ0(u) represents the value of S0(u) with Λ0 replaced by Λ̂0, and hn(u)’s are bounded weight
processes with hn,i,j(u) = hn(u− TKi,j−1)− hn(u− TKi,j). This statistic can be viewed as a nu-
merical integral of the weighted relative difference between4Λ̂1 and4Λ̂2.

Theorem 5 (Asymptotic distribution of the test statistic) Suppose the conditions in Theorem 4 hold,
and there exists a bounded function h0(u) such that h0 ∈Hr and

E

 K∑
j=1

{
hn,j(U)− h0,j(U)

}2

= o(n−1/(1+2r)),

where hn,j(u) = hn(u−TK,j−1)−hn(u−TK,j) and h0,j(u) = h0(u−TK,j−1)−h0(u−TK,j). If
n1/n→ p as n→∞ with 0< p< 1, then under H0 : Λ1 = Λ2 = Λ0,

(i)Qn has an asymptotic distributionN(0, σ2
2), where σ2

2 =
(

1
p+ 1

1−p

)
σ2

0 with σ2
0 =E{m2

1(Λ0, F0;D)[h0]};
(ii) σ2

0 can be consistently estimated by

σ̂2
0 =

1

n

n∑
i=1

[
∆i

{
Ki∑
j=1

4Ni,j −4Λ̂0,i,j(Yi)

4Λ̂0,i,j(Yi)
hn,i,j(Yi)

}2
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+ (1−∆i)

{ Ki∑
j=1

∫ τ
Yi
Ŝ0(u)

4Ni,j−4Λ̂0,i,j(u)

4Λ̂0,i,j(u)
hn,i,j(u)dF̂n(u)

}2

{∫ τ
Yi
Ŝ0(u)dF̂n(u)

}2

]
.

Theorem 5 presents the asymptotic normality of the test statisticQn as well as a consistent estimator
for the asymptotic variance of Qn. We can choose different weight processes to conduct hypothesis
testing, for which we provide typical choices of weight processes in simulation studies. In particular,
we relax the condition of a monotone weight process required in Zhang (2006) and Balakrishnan and
Zhao (2009) by a bounded weight process, and thus the choice of a weight process for our test statistic
is more general.

Using Theorem 5, we can construct the test statistic Qn/{(1/p + 1/(1 − p))σ̂0}, which follows
the standard normal distribution asymptotically, to test H0 for two-sample comparison. In a more
general setting for J-sample comparison, we can use the techniques in Balakrishna and Zhao (2009)
to construct a test statistic which follows a χ2 distribution asymptotically.

5. Simulation Studies

We conducted simulation studies to evaluate the finite-sample performance of the proposed two-stage
estimators and nonparametric tests. We first generated the number of observationsKi from the uniform
distribution with an equal probability of 1/8 on {3,4,5,6,7,8,9,10}. We then generated censoring
time Ci from Uniform(τ/4, τ) and the terminal event time Ui from Uniform(0,4)+Exp(1), where
τ was chosen such that the censoring rate was around 0.2 and 0.4 respectively. We obtained Yi =
min{Ui,Ci} and ∆i = I(Ui≤Ci). For given Yi and Ki, we took observation times Tij , j = 1, · · · ,Ki,
to be the order statistics from Uniform(0, Yi). Finally, theNij’s were generated from a Poisson process
with mean function E(Ni(t)|Ui) = Λ(Ui)−Λ(Ui − t). We considered two mean functions:

CASE 1: Λ1(u|γi) = 8γi{1 − exp(−u)}, Λ2(u|γi) = 8γiβ{1 − exp(−u)} with β = 1,1.3,1.6,
respectively;

CASE 2: Λ1(u|γi) = 3γiu/2, Λ2(u|γi) = γi
√
βu with β = 2,5,10, respectively.

For each case, we took γi = 1 and γi ∼Gamma(2,1/2) corresponding to Poisson and mixed
Poisson processes. The true mean functions in Case 1 do not overlap, while those in Case 2 cross
over. For the purpose of comparison, we considered three types of weights under case 1 with

hn(u) = Λ̂0(u)Wk(u) for k = 1,2,3, where W1(u) = 1, W2(u) = n−1
n∑
i=1

Ki∑
j=1

I(u ≤ Yi − TKi,j)

and W3(u) = n−1
n∑
i=1

I(u ≤ Yi), and two additional types of weights for Case 2 with W4(u) =

n−1
n∑
i=1

Ki∑
j=1

I(u > Yi − TKi,j) and W5(u) = n−1
n∑
i=1

I(u > Yi). We adopted cubic spline basis func-

tions and took qn = 7 with the order of O(n1/4) in the simulation. The sample sizes were set as
(n1, n2) = (40,60), (60,100) and (120,120), and 500 Monte Carlo replications were carried out.

The simulation results are summarized in Figures 2 and 3 and Tables 1 and 2. Figure 2 shows the
plots of the estimates for Λl, l = 1,2 under Case 1 with (n1, n2) = (120,120) and censoring rate
0.2, and the plots for other cases are similar. It can be seen that the estimates are close to the true
functions, which indicates the functional estimates are consistent. Besides, the pointwise 1.96 standard
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Figure 2. Plots of the estimates for Λ1 and Λ2 in Case 1 with a censoring rate of 20% and n1 = n2 = 120. The
solid line is the true function, the dot–dashed line is the pointwise mean estimate, and the dotted lines describe the
pointwise 1.96 standard deviation (1.96-SD) error-bars of the estimates.
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Figure 3. Normal quantile-quantile plots of the test statistics under two different weights in Case 1 with a censoring
rate of 20% and n1 = n2 = 120.

deviation (1.96-SD) error bars based on the sampling standard deviation depicts the degree of the
variability of the functional estimator in the 500 Monte Carlo simulations. To evaluate the asymptotic
normality in Theorem 5, we provide the quantile-quantile (QQ) plots of the test statistics against the
standard normal. Figure 3 presents the normal QQ plots under two different weights in Case 1 with
β = 1, (n1, n2) = (120,120), and censoring rate 0.2. The results reveal that the asymptotic normality
is justified in finite samples with moderate size. Under Case 1, it is obvious that Λ̂1 and Λ̂2 are close
to each other for β = 1, and there are some differences between the two estimates when β takes other
values. Under Case 2, the estimates of Λ1 and Λ2 cross over at different points for different values of
β.

Table 1 shows that the sizes of the proposed tests are all around the nominal value 0.05, and the
power values are closer to 1 when β is much larger than the null value 1 under Case 1 with weights
W1,W2 and W3. Table 2 presents the power values of the proposed tests under Case 2. When the
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Table 1. Estimated size and power of the tests under Case 1 in the simulation

γi = 1 γi ∼ Gamma(2,1/2)
CR β W1 W2 W3 W1 W2 W3

n1 = 40, n2 = 60 n1 = 40, n2 = 60
0.4 1 0.064 0.058 0.060 0.051 0.057 0.055

1.3 0.591 0.528 0.583 0.222 0.202 0.214
1.6 0.966 0.938 0.953 0.551 0.505 0.545

n1 = 60, n2 = 100 n1 = 60, n2 = 100
1 0.054 0.054 0.054 0.053 0.048 0.048

1.3 0.752 0.687 0.743 0.296 0.278 0.284
1.6 0.996 0.991 0.997 0.728 0.675 0.711

n1 = 120, n2 = 120 n1 = 120, n2 = 120
1 0.043 0.049 0.044 0.045 0.047 0.046

1.3 0.914 0.887 0.915 0.431 0.409 0.431
1.6 1.000 1.000 1.000 0.868 0.882 0.897

n1 = 40, n2 = 60 n1 = 40, n2 = 60
0.2 1 0.062 0.052 0.057 0.048 0.054 0.048

1.3 0.710 0.649 0.699 0.233 0.220 0.237
1.6 0.991 0.986 0.991 0.626 0.580 0.614

n1 = 60, n2 = 100 n1 = 60, n2 = 100
1 0.050 0.047 0.047 0.049 0.050 0.048

1.3 0.867 0.812 0.855 0.351 0.322 0.337
1.6 1.000 1.000 1.000 0.815 0.793 0.807

n1 = 120, n2 = 120 n1 = 120, n2 = 120
1 0.050 0.046 0.049 0.055 0.057 0.053

1.3 0.972 0.954 0.967 0.535 0.505 0.527
1.6 1.000 1.000 1.000 0.959 0.946 0.957

Note: CR represents the censoring rate, and Wj ’s represent the weights used in the test statistics.

two mean functions cross over, the power relies on the choice of the weight process, and the tests with
weightsW4 andW5 perform the best. As explained in Balakrishnan and Zhao (2009), this phenomenon
is caused by the fact that the differences before and after the intersection point of two mean functions
have opposite signs, and the difference after the intersection point dominates that before the point.
Thus, the tests with weights W4 and W5 yield higher power, because they weigh the difference at later
time points more than earlier ones in comparison with weights W1 − −W3. In addition, both tables
show that the power increases as the sample size increases or the censoring rate decreases. In summary,
the simulation studies numerically justify the asymptotic properties of the proposed estimator and two-
sample test.

6. Application

We applied the proposed method to the panel count data of occurrences of serious illness truncated
by death from the CLHLS study. Focusing on the individuals who entered the longitudinal study in
1998 and were followed up to 2014, we identified 3050 elderly people after removing 6043 individuals
with missing or erroneous records for the analysis. By using month as the time metric to record the
recurrent serious illness starting from the baseline survey, we let Ni(t) be the observed number of
serious illnesses occurring up to month t for the ith individual, and let Tij be the observation time
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Table 2. Estimated size and power of the tests under Case 2 in the simulation

γi = 1 γi ∼ Gamma(2,1/2)
CR β W1 W2 W3 W4 W5 W1 W2 W3 W4 W5

n1 = 40, n2 = 60 n1 = 40, n2 = 60
0.4 2 0.932 0.542 0.842 0.944 0.810 0.760 0.376 0.606 0.858 0.754

5 0.408 0.056 0.210 0.660 0.556 0.338 0.078 0.142 0.556 0.540
8 0.130 0.074 0.040 0.342 0.382 0.134 0.062 0.038 0.328 0.392

n1 = 60, n2 = 100 n1 = 60, n2 = 100
2 0.984 0.656 0.922 0.998 0.976 0.880 0.444 0.726 0.950 0.882
5 0.488 0.050 0.214 0.872 0.778 0.352 0.058 0.148 0.668 0.674
8 0.084 0.120 0.036 0.450 0.506 0.106 0.080 0.046 0.408 0.500

n1 = 120, n2 = 120 n1 = 120, n2 = 120
2 1.000 0.862 0.994 0.998 0.988 0.978 0.620 0.890 0.994 0.978
5 0.632 0.052 0.298 0.970 0.950 0.392 0.050 0.162 0.834 0.840
8 0.072 0.194 0.032 0.606 0.692 0.080 0.118 0.038 0.416 0.578

n1 = 40, n2 = 60 n1 = 40, n2 = 60
0.2 2 0.990 0.844 0.974 0.992 0.968 0.856 0.560 0.744 0.920 0.858

5 0.652 0.124 0.370 0.886 0.814 0.358 0.062 0.190 0.626 0.636
8 0.132 0.066 0.038 0.534 0.548 0.078 0.050 0.034 0.330 0.412

n1 = 60, n2 = 100 n1 = 60, n2 = 100
2 0.998 0.938 0.996 1.000 0.996 0.964 0.710 0.902 0.990 0.966
5 0.772 0.142 0.476 0.988 0.974 0.476 0.104 0.246 0.790 0.784
8 0.150 0.108 0.042 0.752 0.812 0.110 0.068 0.046 0.454 0.578

n1 = 120, n2 = 120 n1 = 120, n2 = 120
2 1.000 0.994 1.000 1.000 0.998 0.996 0.908 0.982 0.998 0.992
5 0.930 0.204 0.714 0.994 0.992 0.630 0.108 0.328 0.924 0.914
8 0.192 0.144 0.038 0.912 0.954 0.110 0.084 0.041 0.567 0.702

Note: CR represents the censoring rate, and Wj ’s represent the weights used in the test statistics.

points for the ith individual, j = 1, . . . ,Ki, where Ki is the number of observation times for individual
i during the whole survey process. Death as the terminal event was possibly censored by lost of follow-
up or alive by the end of the study. In this study, the longest follow-up time was τ = 197 and the
censoring rate was 27%.

Our goal is to determine whether there was a difference between urban and rural populations on
serious illness occurrences during their life time. Let ΛU and ΛR denote the mean functions of recurrent
event processes for the urban and rural populations respectively, and we are interested in testing the
null hypothesis: H0 : ΛU = ΛR = Λ0. The sample sizes of the two study groups are (nU , nR) =

(1489,1561). We obtained the two-stage likelihood-based estimates Λ̂U , Λ̂R, and Λ̂0 based on each
group and the pooled data respectively, as shown in Figure 5. Because this study mainly involved
elderly people, for large u, the estimate of Λ(u) was largely based on the subjects with longer survival;
for example, u = 160 months corresponded to those who lived 91 years old or beyond. Therefore, it
is reasonable to expect these subjects had suffered much more serious diseases during their life time.
In addition, it appears that for the elders with longevity, the serious diseases might mostly occur when
they were around 70, which contributed to the sharp rising in the estimate of the cumulative event
counts for a larger value of u. It can be seen that people living in urban areas seemed to experience
more serious illnesses during their life time compared with those in rural areas.
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Λ̂U v.s. Λ̂R
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Figure 4. Plots of the estimates of the mean functions Λ’s for the urban, rural and the pooled group based on the
CLHLS data. The solid line denotes the estimate for the common mean function based on the pooled data, the
dot–dashed line denotes that for ΛU , and the dashed line denotes that for ΛR.

We further applied the proposed test in Section 4 to the hypothesis H0. We chose weights W1,
W2 and W3 based on the patterns of the estimated mean functions, and adopted cubic spline basis
functions with qn = 7 which is in the order of O(n1/4). As shown in Table 3, the life-time experience
of serious illness was significantly different between people in urban and rural areas regardless the
choice of weight processes. People living in urban areas had a significantly higher serious disease rate
compared to those in rural areas, while the caution in interpreting the difference needs to be exercised.
A relatively more stressful life style in urban areas might have contributed to a higher disease rate in
people’s life time, but incomprehensive health care systems and limited access to medical facilities in
rural areas that resulted in fewer disease diagnoses might also be a contributing factor to explain the
difference.

To examine whether our model has a reasonable fit to the CLHLS data, we estimated Λ for sub-
groups defined by U . We divided the CLHLS data into two subsets according to the median value of
U (about 49 months from the study enrollment), where Group 1 consists of the individuals with U
values smaller than 49 months and Group 2 with U ≥ 49. The sample sizes for two groups are 1000
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Table 3. Two-sample test results of H0 : ΛU = ΛR with different weights for the CLHLS data

W1 W2 W3
Qn 8.790 4.789 7.314
SE 2.211 1.256 1.837
p-value < 10−3 < 10−3 < 10−3

Note: Wj ’s represent the weights used in the test statistics, Qn represents the observed statistic, and SE
represents the estimated standard error of Qn.

and 1218, respectively. The estimates of mean function Λ(t) for different groups are given in Figure 5.
It shows that the mean function of Group 1 is similar to that of Group 2 for t ∈ [0,49], indicating the
homogeneous temporal model is a reasonable assumption.
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Figure 5. Plots of the estimates for the mean functions Λ’s from two groups divided by values of the terminal
event time U in the CLHLS data. The solid line denotes the estimate for the mean function based on the data
with terminal event time smaller than 49 months from the study enrollment, and the dashed line denotes that with
terminal event time greater than 49 months.
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7. Concluding Remarks

We have proposed a flexible and intuitive nonparametric reversed conditional mean model to charac-
terize the behavior of a recurrent event process near an informative terminal event that truncates the
process in panel count data. The asymptotic properties of the two-stage estimator are thoroughly es-
tablished, which are further applied to construct a class of new tests for nonparametric comparison of
recurrent event processes. In the development of the two-stage estimation procedure, we base a Pois-
son process as the working model to obtain the likelihood function, while the asymptotic results do
not depend on the Poisson process assumption, implying the proposed method is robust against the
underlying stochastic mechanism of counting process N(t).

Our work focuses on comparing the recurrent event processes truncated by a terminal event under
the assumption that the distribution of the terminal event is the same across groups. It can be easily
extended to comparing the whole disease processes that include both the recurrent event process and
terminal event process by testing the null hypothesis, H0 : Λ1 = Λ2 and F1 = F2, for two populations.

While the nonparametric inference is the focal point of this work, the reversed mean model for
panel count data subject to an informative terminal event can be extended to semiparametric regression
analysis that studies the effects of covariates on the recurrent event process prior to the terminal event.
This extension is critical to analyze the CLHLS data in order to investigate the effects of socioeconomic
status, family lifestyle, and demographic profile on the health of the aging population, which warrants
for future research.

In general, the conditional expectation for the reversed count process Ñ(t;U) can be expressed by

E(Ñ(t;U)|U = u) = Λ
Ñ

(t|u), 0≤ t≤ u,

where Λ
Ñ

(·|u) is a nonincreasing function for each fixed u with Λ
Ñ

(u|u) = 0. In this paper, we
have focused on a specific reversed mean model, Λ

Ñ
(t|u) = Λ(u − t), which can be viewed as a

homogeneous temporal model as the reversed event count only depends on the time to the terminal
event u−t but not the terminal event time u. This model is suitable for the CLHLS data as demonstrated
in the previous section. Further research can be focused on other forms of Λ

Ñ
(t|u) or other models on

Ñ(t;U) such as a model with a latent acceleration parameter suggested by a reviewer.

8. Proofs of Theorems

8.1. Lemmas

First, we introduce more notation. Define the metric d2 on Ψ as

d2
2(Λ1,Λ2) =

∫ ∣∣Λ1(t)−Λ2(t)
∣∣2dµ2(t) for Λ1,Λ2 ∈Ψ,

Fη = {F : ||F − F0||∞ ≤ η,F ∈ F}, Ψnδ = {Λ : d1(Λ,Λ0) ≤ δ,Λ ∈ Ψn}, and Ψ0
δ = {Λ :

d1(Λ,Λ0)≤ δ,Λ ∈Ψ}. Let F (u) = 1− F (u),

Aj(u) =
4Nj
4Λj(u)

− 1, and S(u) =

K∏
j=1

[4Λj(u)]4Nj exp(−4Λj(u))

4Nj !
.
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For the two quantities above, we use the notation Ânj(u) and Ŝ(u) when Λ(u) = Λ̂n(u), and A0j(u)
and S0(u) when Λ(u) = Λ0(u). Define

m(Λ, F ;D) = ∆

K∑
j=1

{
4Nj log(4Λj(Y ))−4Λj(Y )

}
+ (1−∆) log

{∫ τ

Y
S(u)dF (u)

}
,

m1(Λ, F ;D)[h] = ∆

K∑
j=1

Aj(Y )hj(Y ) + (1−∆)

∫∞
Y S(u)

K∑
j=1

Aj(u)hj(u)dF (u)∫∞
Y S(u)dF (u)

,

m11(Λ, F ;D)[h1, h2] =−∆

K∑
j=1

4Nj
4Λ2

j (Y )
h1j(Y )h2j(Y ) + (1−∆)

(∫ ∞
Y

S(u)dF (u)
)−1

×
∫ ∞
Y

S(u)

([
K∑
j=1

Aj(u)h1j(u)

]
·

[
K∑
j=1

Aj(u)h2j(u)

]

−
K∑
j=1

4Nj
(4Λj(u))2

h1j(u)h2j(u)

)
dF (u)− (1−∆)

(∫ ∞
Y

S(u)dF (u)
)−2

×
∫ ∞
Y

S(u)

K∑
j=1

Aj(u)h1j(u)dF (u)

∫ ∞
Y

S(u)

K∑
j=1

Aj(u)h2j(u)dF (u),

m12(Λ, F ;D)[h1, h3] = (1−∆)
(∫ ∞

Y
S(u)dF (u)

)−1
∫ ∞
Y

S(u)

K∑
j=1

Aj(u)h1j(u)dh3(u)

− (1−∆)
(∫ ∞

Y
S(u)dF (u)

)−2
∫ ∞
Y

S(u)

K∑
j=1

Aj(u)h1j(u)dF (u)

∫ ∞
Y

S(u)dh3(u)

with hlj(u) = hl(u− TK,j−1)− hl(u− TK,j) for l= 1,2, Gn(Λ, F )[h] = Pnm1(Λ, F ;D)[h],

Ġ1,Λ0,F0
(Λ−Λ0)[h] = P (m11(Λ0, F0;D)[h,Λ−Λ0]), and

Ġ2,Λ0,F0
(F − F0)[h] = P (m12(Λ0, F0;D)[h,F − F0]).

Write L(Λ, F ;D) = exp{m(Λ, F ;D)}.

Lemma 1 Under Conditions (C1)–(C3), Pm(Λ, F0;D) has a unique maximizer Λ0.

Lemma 2 Under Conditions (C1)–(C3) and (C7)–(C8), the class of functions {m(Λ, F ;D) : Λ ∈
Ψ, F ∈ F ,Λ is uniformly bounded} is Donsker.

Lemma 3 Let G = {h : [0, τ ]→ [0,M ]} for a positive constant M . Define

Gδ(F ) ={m(Λ, F ;D)−m(Λ0, F ;D) : Λ ∈Ψnδ},
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G1,δ(F )[h] ={m1(Λ, F ;D)[h]−m1(Λ0, F ;D)[h] : Λ ∈Ψnδ},

G2,δ(F )[h] =
{
Vn

(
Λ,Λ0, h,F

)
: Λ ∈Ψnδ

}
for F ∈ Fη and h ∈ G. Then under Conditions (C1)–(C3) and (C6)–(C8), we have for any 0< ε < δ,

logN[](ε,Gδ(F ), || · ||P,B) ≤ cqn log(δ/ε), (2)

logN[](ε,G1,δ(F )[h], || · ||P,B) ≤ cqn log(δ/ε), (3)

logN[](ε,G2,δ(F )[h], || · ||P,B) ≤ cqn log(δ/ε), (4)

where || · ||P,B is Bernstein’s norm defined as ||f ||P,B = (2P (e|f | − 1− |f |))1/2.

Lemma 4 (i) Under Condition (C4), for any integrable function φ(x) on [0,∞),(∫ ∞
y

φ(x)d[F (x)− F0(x)]

)2

.
∫ ∞
y

φ̇2(x)dF0(x) · ||F − F0||2∞ + φ2(y)||F − F0||2∞

for any F ∈ F and any y ∈ [0,∞).
(ii) Under Conditions (C1)–(C4), we have for small enough δ and Λ ∈Ψ0

δ ,∣∣∣P(m(Λ, F ;D)−m(Λ, F0;D)− (1−∆)
F0(Y )− F (Y )

F 0(Y )

)∣∣∣. d1(Λ,Λ0)||F −F0||∞+ ||F −F0||2∞.

(5)
Particularly,

∣∣P (m(Λ0, F ;D)−m(Λ0, F0;D)
)∣∣. ||F − F0||∞.

Lemma 5 Assume that for given F ∈ Fη , and for arbitrary function φn : (0,∞)→ R such that δ→
φn(δ)/δβ is decreasing for some 0< β < 2, every δ > 0, every Λ ∈Ψn,

P (m(Λ, F ;D)−m(Λ0, F ;D)) .−d2
1(Λ,Λ0) + d2(F,F0) + d1(Λ,Λ0)d(F,F0),

E

[
sup

d1(Λ,Λ0)<δ,Λ∈Ψn

|
√
n(Pn − P )(m(Λ, F ;D)−m(Λ0, F ;D))|

]
≤ φn(δ),

where d(F,F0) represents the distance metric between F and F0. Let rn > 0 satisfy φn(rn) ≤√
nr2
n for every n ∈ N. If Λ̂n ∈ Ψn is a consistent estimator for Λ satisfying Pnm(Λ̂n, F ;D) ≥

Pnm(Λ0, F ;D)−Op(r2
n), then d1(Λ̂n,Λ0) =Op(rn + d(F,F0)).

According to Lemma 3 in the supplementary material of Kong and Nan (2016), we have the follow-
ing conclusion on the consistency of the Kaplan–Meier (KM) estimator.

Lemma 6 (Consistency of KM estimator) Suppose Condition (C5) holds, then ||F̂n(t)− F0(t)||∞ =

Op(n
−1/2).

Following Propositions 3, 4 and Theorem 5 of Akritas (2000), we can obtain the central limit theorem
for integral of the KM estimator.

Lemma 7 (Asymptotic normality of KM estimator) Let

φ̃(u) = F 0(u−)
[
φ(u)− 1

F0(u)

∫ τ

u
φ(t)dF0(t)

]
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and M(u;Di) = I(Yi≤u,∆i=1) −
∫ u
−∞ I(Yi≥s)dH0(s) with G0 being the common distribution of Ci,

F 0(u) = 1− F0(u) and H0 = 1− (1− F0)(1−G0). Then under Condition (C2), we have for any

integrable function φ(u) satisfying
∫ τ

0

φ2(u)

1−G0(u−)
dF0(u)<∞,

∫ τ

0
φ(u)d[F̂n(u)− F0(u)] =

1

n

n∑
i=1

∫ τ

0

φ̃(u)

1−H0(u−)
dM(u;Di),

and

n1/2
∫ τ

0
φ(u)d(F̂n(u)− F0(u))

d−→N(0, σ2),

where σ2 is defined as in (4) of Akritas (2000).

8.2. Proof of Theorem 1

According to Lemma A1 in Lu et al. (2007), for Λ0 ∈ Hr, there exists Λn ∈ Ψn such that
||Λn − Λ0||∞ = O(n−rν). Choose a positive monotone hn ∈Ψn such that ||hn||2L2(µ1) = O(n−νr +

n−(1−ν)/2). Then for anyα> 0, ||Λn−Λ0 +αhn||2L2(µ1) =O(n−νr+n−(1−ν)/2) and inf
t−s≥s0

(4Λn(t, s)−

4Λ0(t, s) +α4hn(t, s))> 0 for sufficiently large n, where4hn(t, s) = hn(t)− hn(s) and s0 is de-
fined as in (C7). Let Hn(α) =m(Λn + αhn, F̂n;D). Then the first derivative of Hn is

Ḣn(α) =∆

K∑
j=1

{ 4Nj
4Λnj(Y ) + αhn,j(Y )

− 1
}
hn,j(Y ) +

1−∆∫∞
Y Sn(u)dF̂n(u)

×
∫ ∞
Y

Sn(u)

K∑
j=1

{ 4Nj
4Λnj(u) + αhn,j(u)

− 1
}
hn,j(u)dF̂n(u),

where Sn(u) represents S(u) taking value at 4Λj(u) = 4Λnj(u) + αhn,j(u). We claim that
P (d1(Λ̂n,Λn) ≤ α0||hn||L2(µ1))→ 1 by showing that PnḢn(α0) < 0 and PnḢn(−α0) > 0 for any

α0 > 0. Note that PnḢn(α0) = (Pn − P )Ḣn(α0) + PḢn(α0) := I1 + I2. Similar to Lemma 3, us-
ing Conditions (C7) and (C8), we can show that the class L1δ(F ) = {m1(Λ, F ;D)[Λ − Λn] : Λ ∈
Ψnδ, F ∈ Fη} with δ2 = n−νr + n−(1−ν)/2 is Donsker. Hence, I1 =Op(n

−1/2). Since ||Λn −Λ0 +

α0hn||2L2(µ1) =O(n−νr +n−(1−ν)/2) = o(1) and ||F̂n−F0||∞ =Op(n
−1/2), then by Lemma 4, we

have

I2 .P

(
∆

K∑
j=1

( 4Λ0j(Y )

4Λnj(Y ) + α0hn,j(Y )
− 1
)
hn,j(Y )

+
1−∆

F 0(Y )

∫ ∞
Y

K∑
j=1

( 4Λ0j(u)

4Λnj(u) + α0hn,j(u)
− 1
)
hn,j(u)dF0(u)

)
+ ||F̂n − F0||∞.
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Define anj =4Λnj −4Λ0j + α0hn,j and b(s) =4Λ0j/(4Λ0j + sanj) for 0≤ s≤ 1. Then

b(s) = 1 +
(
−

anj
4Λ0j

)
s+

4Λ0ja
2
nj

(4Λ0j + ξanj)2
s2,

for some ξ ∈ (0,1). Since 4Λ0j and anj are bounded on [0, τ ], there exists constants c1 and c2 such
that

c1E


K∑
j=1

a2
nj(U)

≤E


K∑
j=1

4Λ0j(U)a2
nj(U)

(4Λ0j(U) + ξanj(U))2

≤ c2E


K∑
j=1

a2
nj(U)

 .

Therefore,

E


K∑
j=1

4Λ0j(U)a2
nj(U)

(4Λ0j(U) + ξanj(U))2

=O(n−νr + n−(1−ν)/2),

and so

I2 ≤E


K∑
j=1

(−c1anj + c2a
2
nj)hn,j + c3n

−1/2

≤−c12 E


K∑
j=1

anj + c3n
−1/2

=−c(n−νr + n−(1−ν)/2)

for some constant c > 0. Noting that n−1/2 = o(n−νr + n−(1−ν)/2) for 0 < ν < 1/2, we have
PnḢn(α0)< 0 except on an event with probability converging to zero. The same arguments can show
that PnḢn(−α0)> 0 with probability converging to 1 as n→∞. Thus, we get that P (d1(Λ̂n,Λ0)>

ε)→ 0 for any ε > 0. So there exits a measurable set Ξ with P (Ξ)≥ 1− ε for any ε > 0 such that Λ̂n
defined on [0, τ ] is uniformly bounded on Ξ.

We now restrict us on the measurable set Ξ. Recalling that ||Λn −Λ0||∞ =O(q−rn ), we have

Pnm(Λn, F̂n;D)− Pnm(Λ0, F̂n;D)

=(Pn − P )
(
m(Λn, F̂n;D)−m(Λ0, F̂n;D)

)
+ P

(
m(Λn, F̂n;D)−m(Λ0, F̂n;D)

)
:= I1 + I2.

Since a Donsker class is also Glivanko-Cantilli class, then by Lemma 7, we have |I1| = op(1). In
addition, |I2| ≤ cE(N(TK,K) + 1)||Λn −Λ0||∞ =O(q−rn ) = o(1). Thus, we have

Pnm(Λn, F̂n;D) = Pnm(Λ0, F̂n;D) + op(1).

Then the definition of Λ̂n yields that

Pnm(Λ̂n, F̂n;D)≥ sup
Λn∈Ψn

Pnm(Λn, F̂n;D)≥ Pnm(Λ0, F̂n;D)+op(1) = Pnm(Λ0, F0;D)+op(1),

(6)
where the last equality is from Lemma 6 and Lemma 4. Using Lemma 2, we have

0≤P (m(Λ0, F0;D)−m(Λ̂n, F0;D)) = op(1), (7)

where the second inequality is obtained from (6) and the last equality is from Lemma 4. Besides, we
have by Lemma 1 that for any δ > 0, sup

d1(Λ,Λ0)>δ
Pm(Λ, F0;D)<Pm(Λ0, F0;D). This shows that

{d1(Λ̂n,Λ0)> δ} ⊂ {Pm(Λ̂n, F0;D)<Pm(Λ0, F0;D)},
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with the sequence of the events on the right going to a null event in view of inequality (7). Since this
relation holds on the measurable set Ξ with P (Ξ)≥ 1− ε, it implies d1(Λ̂n,Λ0)→ 0 almost uniformly.
So we conclude the almost sure convergence of Λ̂n using the arguments of Lemma 1.9.2 in van der
Vaart and Wellner (1996).

8.3. Proof of Theorem 2

We prove the theorem by verifying the conditions in Lemma 5. Using the triangle inequality, we have

Pm(Λ, F̂n;D)− Pm(Λ0, F̂n;D)≤
∣∣∣P(m(Λ, F̂n;D)−m(Λ, F0;D)− (1−∆)

F0(Y )− F (Y )

F 0(Y )

)∣∣∣
+
∣∣∣P(m(Λ0, F̂n;D)−m(Λ0, F0;D)− (1−∆)

F0(Y )− F (Y )

F 0(Y )

)∣∣∣
+ P (m(Λ, F0;D)−m(Λ0, F0;D)) := I1 + I2 + I3.

From Lemma 4, it follows that for Λ ∈Ψ0
δ , I1 + I2 . d1(Λ,Λ0)||F̂n − F0||∞ + ||F̂n − F0||2∞. For I3,

I3 =P

(
∆

K∑
j=1

{
4Nj log

4Λj(Y )

4Λ0j(Y )
− (4Λj(Y )−4Λ0j(Y ))

})
+ P

(
(1−∆) log

∫∞
Y S(u)dF0(u)∫∞
Y S0(u)dF0(u)

)

:=I31 + I32.

For I31 and I32, we can show that I31 .−P
(

∆
K∑
j=1

(
4Λj(Y )−4Λ0j(Y )

)2)
and

P (I32) .− P

(
1−∆

F 0(Y )

∫ ∞
Y

K∑
j=1

(4Λj(u)−4Λ0j(u))2dF0(u)

)
.

Thus, we have I3 .−d2
1(Λ,Λ0). This gives that

P (m(Λ, F̂n;D)−m(Λ0, F̂n;D)) .−d2
1(Λ,Λ0) + d1(Λ,Λ0)d(F̂n, F0) + d2(F̂n, F0). (8)

Moreover, similar to the proof of part (ii) in Lemma 3, we can show that

||m(Λ, F̂n;D)−m(Λ0, F̂n;D)||2P,B .d1(Λ,Λ0)d(F̂n, F0) + d2
1(Λ,Λ0) . δ2

for n−1/2 .O(δ) and d1(Λ,Λ0) .O(δ). Therefore, Lemma 3 gives that

J[](δ,Gδ(F̂n), || · ||P,B) =

∫ δ

0
(1 + logN[](ε,Gδ(F̂n), || · ||P,B))1/2dε≤ cq1/2

n δ.

Then by Lemma 3.4.3 of van der Vaart and Wellner (1996), we obtain

E

{
sup

d1(Λ,Λ0)<δ,Λ∈Ψn

√
n|(Pn − P )(m(Λ, F̂n;D)−m(Λ0, F̂n;D))|

}

≤J[](δ,Gδ(F̂n), || · ||P,B)(1 + J[](δ,Gδ(F̂n), || · ||P,B)/(δ2n1/2)) . q
1/2
n δ + qnn

−1/2.
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Setting φn(δ) = q
1/2
n δ + qnn

−1/2 and rn = n−(1−ν)/2, it is easy to see that φn(δ)/δ is a decreasing
function of δ and φn(rn)/r2

n =O(n1/2).
According to Lemma A1 in Lu et al. (2007), there exists Λn ∈ Ψn with order l ≥ r + 2 such that

||Λn −Λ0||∞ =O(n−rν) for 0< ν < 1/2. Then

Pnm(Λ̂n, F̂n;D)− Pnm(Λ0, F̂n;D)

=
(
Pnm(Λ̂n, F̂n;D)− Pnm(Λn, F̂n;D)

)
+ (Pn − P )

(
m(Λn, F̂n;D)−m(Λ0, F̂n;D)

)
+ P

(
m(Λn, F̂n;D)−m(Λ0, F̂n;D)

)
:=I1 + I2 + I3,

where I1 ≥ 0 by the definition of Λ̂n. For I2, we set

G̃(F ) =
{m(Λ, F ;D)−m(Λ0, F ;D)

n−rν+ε : Λ ∈Ψn, ||Λ−Λ0||∞ =O(n−rν)
}

for any 0< ε < 1/2− rν, and it can be argued that G̃(F̂n) is P-Donsker by (C1)–(C3) and (C6)–(C8).
In addition, we can obtain that Pf2→ 0 as n→∞ for any f ∈ G̃(F̂n). Thus, by Corollary 2.3.12 of
van der Varrt and Wellner (1996), we have

I2 = n−rν+ε(Pn − P )
(m(Λn, F̂n;D)−m(Λ0, F̂n;D)

n−rν+ε

)
=Op(n

−rν+εn−1/2) = o(n−2rν).

For I3, we have I3 ≥−Op(n−2rν) by following the deduction for (8). Hence,

Pnm(Λ̂n, F̂n;D)− Pnm(Λ0, F̂n;D)≥−Op(n−2rν).

To satisfy the conditions in Lemma 5, we need n−2rν =O(n−(1−ν)). The choice of ν = 1/(1 + 2r)

yields the convergence rate of nr/(1+2r). This completes the proof of Theorem 2.

8.4. Proof of Theorem 3

From Assumptions (B2)–(B4), we have

−
√
nĠ

1,Λ0,F̂n
(Λ̂n −Λ0)[h]−

√
nĠ2,Λ0,F0

(F̂n − F0)[h] =−
√
nG(Λ̂n, F̂n)[h] + op(1). (9)

Assumptions (B1) and (B2) give

−
√
nG(Λ̂n, F̂n)[h] =

√
n(Gn −G)(Λ0, F0)[h] + op(1). (10)

Then it follows from (9) and (10) that

−
√
nĠ

1,Λ0,F̂n
(Λ̂n −Λ0)[h] =

√
n(Gn −G)(Λ0, F0)[h] +

√
nĠ2,Λ0,F0

(F̂n − F0)[h] + op(1).

Thus, the theorem is proved by Assumption (B5).
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8.5. Proof of Theorem 4

To prove the theorem, we need to verify Assumptions (B1)–(B5) by Theorem 3.
(a) We show (B1). Noting that d1(Λ̂n,Λ0) =Op(n

−r/(1+2r)) by Theorem 2, we have lim
n→∞

P (Λ̂n ∈

Ψnδ) = 1 with δ =O(n−r/(1+2r)). Hence, we only need to prove

sup
Λ∈Ψnδ

|
√
n(Gn −G)(Λ, F̂n)[h]−

√
n(Gn −G)(Λ0, F0)[h]|= op(1) (11)

uniformly in h ∈Hr. Lemma 3 gives that J[](δ, g1,δ(F̂n)[h], || · ||P,B) . q
1/2
n δ. Applying Lemma 3.4.3

of van de Vaart and Wellner (1996), we obtain that

E

{
sup

Λ∈Ψnδ

|
√
n(Pn − P )(m1(Λ, F̂n;D)[h]−m1(Λ0, F̂n;D)[h])|

}

.J[](δ, g1,δ(F̂n)[h], || · ||P,B)
(
1 + J[](δ, g1,δ(F̂n)[h], || · ||P,B)/(δ2n1/2)

)
= o(1).

Then by Markov’s inequality, we have

sup
Λ∈Ψnδ

|
√
n(Gn −G)(Λ, F̂n)[h]−

√
n(Gn −G)(Λ0, F̂n)[h]|= op(1).

In addition, Lemma 1 shows that

|
√
n(Gn −G)(Λ0, F̂n)[h]−

√
n(Gn −G)(Λ0, F0)[h]|= op(1).

Thus, by the triangle inequality, we obtain (11).
(b) We show (B2). A simple calculation yields that G(Λ0, F0)[h] = Pm1(Λ0, F0;D)[h] = 0 for

any h ∈Hr. It remains to show Gn(Λ̂n, F̂n)[h] = Pnm1(Λ̂n, F̂n;D)[h] = op(n
−1/2) for h ∈Hr. We

first note that Λ̂n =
qn∑
l=1

α̂lBl satisfies the following equation ∂Pnm(Λ,F̂n;D)
∂αl

∣∣∣∣∣
αl=α̂l

= 0, which means

that for any hn ∈Ψn, Gn(Λ̂n, F̂n)[hn] = 0. Besides, for any h ∈ Hr, there exists hn ∈Ψn such that
||h(r) − h(r)

n ||∞ = O(n−rν), r = 0,1 by Lemma A1 in Lu et al. (2007). We now only need to show
that Gn(Λ̂n, F̂n)[h− hn] = op(n

−1/2). To this end, we write

Gn(Λ̂n, F̂n)[h− hn] =
(
Gn(Λ̂n, F̂n)[h− hn]−Gn(Λ0, F̂n)[h− hn]

)
+
(
Gn(Λ0, F̂n)[h− hn]−Gn(Λ0, F0)[h− hn]

)
+Gn(Λ0, F0)[h− hn]

:= I1 + I2 + I3.

We first note

P |I1|

≤ P

(
∆

K∑
j=1

∣∣∣4Λ̂nj(Y )−4Λ0j(Y )

4Λ̂nj(Y )

∣∣∣)||h− hn||∞
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+ P

(
(1−∆)

∣∣∣∣∣
∫∞
Y Ŝn(u)

K∑
j=1

Ânj(u)(hj − hn,j)(u)dF0(u)∫∞
Y Ŝn(u)dF0(u)

−

∫∞
Y S0(u)

K∑
j=1

A0j(u)(hj − hn,j)(u)dF0(u)∫∞
Y S0(u)dF0(u)

∣∣∣∣∣
)

+ P

(
(1−∆)

∣∣∣∣∣
∫∞
Y Ŝn(u)

K∑
j=1

Ânj(u)(hj − hn,j)(u)dF̂n(u)∫∞
Y Ŝn(u)dF̂n(u)

−

∫∞
Y Ŝn(u)

K∑
j=1

Ânj(u)(hj − hn,j)(u)dF0(u)∫∞
Y Ŝn(u)dF0(u)

∣∣∣∣∣
)

+ P

(
(1−∆)

∣∣∣∣∣
∫∞
Y S0(u)

K∑
j=1

A0j(u)(hj − hn,j)(u)dF̂n(u)∫∞
Y S0(u)dF̂n(u)

−

∫∞
Y S0(u)

K∑
j=1

A0j(u)(hj − hn,j)(u)dF0(u)∫∞
Y S0(u)dF0(u)

∣∣∣∣∣
)

:=I11 + I12 + I13 + I14.

It can be seen that I11 ≤ cP
(

∆
K∑
j=1

∣∣4Λ̂nj(Y ) −4Λ0j(Y )
∣∣) · ||h − hn||∞. For I12, we take h1 =

4Λ̂n −4Λ0 and

g(t) =

(∫ ∞
Y

exp
( K∑
j=1

[
4Nj log(4Λ0j + th1j)(u)

]
− (4Λ0j + th1j)(u)− log4Nj !

)
dF0(u)

)−1

×
∫ ∞
Y

exp
( K∑
j=1

[
4Nj log(4Λ0j + th1j)(u)− (4Λ0j + th1j)(u)− log4Nj !

])

×
K∑
j=1

( 4Nj
(4Λ0j + th1j)(u)

− 1
)

(hj − hn,j)(u)dF0(u).

Then we have

I12 =P
(
(1−∆)|g(1)− g(0)|

)
= P

(
(1−∆)|ġ(ξ)|

)
≤c

[
P

(
1−∆

F 0(Y )

∫ ∞
Y

K∑
j=1

h2
1j(u)dF0(u)

)]1/2

||h− hn||∞.

Moreover, by Lemma 4

I13 =P

(
(1−∆)

∣∣∣∣∣
∫∞
Y Ŝn(u)

K∑
j=1

Ânj(u)(hj − hn,j)(u)d(F̂n − F0)(u)∫∞
Y Ŝn(u)dF ξ(u)

−

∫∞
Y Ŝn(u)

K∑
j=1

Ânj(u)(hj − hn,j)(u)dF ξ(u) ·
∫∞
Y Ŝn(u)d(F̂n − F0)(u)(∫∞

Y Ŝn(u)dF ξ(u)
)2

∣∣∣∣∣
)

.||F̂n − F0||∞ · ||h− hn||∞,



Reversed Mean Models with Panel Count Data 25

where F ξ = F0 + ξ(F̂n − F0) for some ξ ∈ (0,1) and I14 . ||F̂n − F0||∞ · ||h− hn||∞. Therefore,

P |I1|=Op
(
d1(Λ̂n,Λ0) · ||h− hn||∞ + ||F̂n − F0||∞ · ||h− hn||∞

)
= op(n

−1/2).

Similarly, we can obtain that P |I2|. ||F̂n − F0||∞||h− hn||∞ = op(n
−1/2), and

PI2
3 .

1

n
P

(
∆

K∑
j=1

A0j(Y )(hj − hn,j)(u) + (1−∆)

∫∞
Y S0(u)

K∑
j=1

A0j(u)(hj − hn,j)(u)dF0(u)∫∞
Y S0(u)dF0(u)

)2

.
1

n
||h− hn||2∞.

Thus, we have Gn(Λ̂n, F̂n)[h− hn] = op(n
−1/2).

(c) We show (B3). By the smoothness of Gn(Λ, F )[h] with respect to Λ and F , we claim that
G(Λ, F )[h] is Fréchet-differentiable with respect to Λ and F at (Λ0, F0). Moreover, their Fréchet
derivatives are

Ġ1,Λ0,F0
(Λ−Λ0)[h] = P (m11(Λ0, F0)[h,Λ−Λ0]) and

Ġ2,Λ0,F0
(F − F0)[h] = P (m12(Λ0, F0)[h,F − F0]).

(d) We show (B4). Since G(Λ0, F0)[h] = 0, we have

G(Λ̂n, F̂n)[h]−G(Λ0, F0)[h]− Ġ
1,Λ0,F̂n

(Λ̂n −Λ0)[h]− Ġ2,Λ0,F0
(F̂n − F0)[h]

=
(
Ġ

1,Λξ,F̂n
− Ġ

1,Λ0,F̂n

)
(Λ̂n −Λ0)[h] + (Ġ2,Λ0,F ξ

− Ġ2,Λ0,F0

)
(F̂n − F0)[h] := I1 + I2,

where F ξ = F0 + ξ(F̂n − F0) for some ξ ∈ (0,1). We recall that h1 =4Λ̂n −4Λ0 and split I1 into
I11 − I12 − I13, where

|I11|=

∣∣∣∣∣P
(

∆

K∑
j=1

( 4Nj
(4Λξj(Y ))2

−
4Nj
4Λ2

0j(Y )

)
h1j(Y )hj(Y )

)

+ P

(
(1−∆)

∫∞
Y S0(u)

[ K∑
j=1

Aξ,j(u)h1j(u)
][ K∑
j=1

Aξ,j(u)hj(u)
]
dF̂n(u)∫∞

Y S0(u)dF̂n(u)

− (1−∆)

∫∞
Y S0(u)

[ K∑
j=1

A0j(u)h1j(u)
][ K∑
j=1

A0j(u)hj(u)
]
dF̂n(u)∫∞

Y S0(u)dF̂n(u)
+ op(1)

)∣∣∣∣∣
.d2

1(Λ̂n,Λ0) + op(||F̂n − F0||∞),

|I12|=

∣∣∣∣∣P
(

(1−∆)

∫∞
Y S0(u)

[ K∑
j=1

(
4Nj

(4Λξj (u))2
− 4Nj
4Λ2

0j(u)

)
h1j(u)hj(u)

]
dF̂n(u)∫∞

Y S0(u)dF̂n(u)

)
+ op(1)

∣∣∣∣∣
.d2

1(Λ̂n,Λ0) + op(||F̂n − F0||∞),
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|I13|=

∣∣∣∣∣P
(

(1−∆)
(∫ ∞

Y
S0(u)dF̂n(u)

)−2
(∫ ∞

Y
S0(u)

K∑
j=1

Aξ,j(u)h1j(u)dF̂n(u)

×
∫ ∞
Y

S0(u)

K∑
j=1

Aξ,j(u)hj(u)dF̂n(u)

−
∫ ∞
Y

S0(u)

K∑
j=1

A0j(u)h1j(u)dF̂n(u)

∫ ∞
Y

S0(u)

K∑
j=1

A0j(u)hj(u)dF̂n(u)

))
+ op(1)

∣∣∣∣∣
.d2

1(Λ̂n,Λ0) + op(||F̂n − F0||∞).

We then split I2 into I21 − I22, where

|I21|=

∣∣∣∣∣P
(

(1−∆)

∫ ∞
Y

S0(u)

K∑
j=1

A0j(u)h1j(u)d[F̂n(u)− F0(u)]

×

[
1∫∞

Y S0(u)dF ξ(u)
− 1∫∞

Y S0(u)dF0(u)

]∣∣∣∣∣= op(||F̂n − F0||∞),

|I22|=

∣∣∣∣∣P
(

(1−∆)
(∫ ∞

Y
S0(u)dF0(u)

)−2
∫ ∞
Y

S0(u)

K∑
j=1

A0j(u)hj(u)d[F ξ(u)− F0(u)]

×
∫ ∞
Y

S0(u)d[F̂n(u)− F0(u)]

)∣∣∣∣∣= op(||F̂n − F0||∞).

Thus, we have

G(Λ̂n, F̂n)[h]−G(Λ0, F0)[h]− Ġ
1,Λ0,F̂n

(Λ̂n −Λ0)[h]− Ġ2,Λ0,F0
(F̂n − F0)[h]

.d2
1(Λ̂n,Λ0) + op(||F̂n − F0||∞) = op(n

−1/2).

(e) We show (B5). Let Sn(Λ, F ) = Gn(Λ, F ) + Ġ2,Λ,F (F̂n − F ). Then Sn is a map from U to
l∞(Hr). Write

ψ(u;D) =
S0(u)∫∞

Y S0(u)dF0(u)
and ζ(u;D)[h] =

K∑
j=1

Aj(u)hj(u).

Then

m12(Λ0, F0;D)[F − F0, h] = (1−∆)

∫ ∞
Y

ψ(u;D)

×

(
ζ(u;D)[h]−

∫ ∞
Y

ψ(s;D)ζ(s;D)[h]dF0(s)

)
d[F (u)− F0(u)].
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Define ζ(u;D)[h] = ζ(u;D)[h]−
∫ ∞
Y

ψ(s;D)ζ(s;D)[h]dF0(s) and φ(u;D)[h] = ψ(u;D)ζ(u;D)[h].

By Lemma 7, we have

Ġ2,Λ0,F0
(F̂n − F0)[h] =P

(
(1−∆)

∫ ∞
Y

φ(u;D)[h]d[F̂n(u)− F0(u)]

)

=
1

n

n∑
i=1

P

(
(1−∆i)

∫ τ

Yi

φ̃(u;D)[h]

1−H0(u−)
dM(u; D̃i)

)
:=Pn

(
κ(Λ0, F0;D)[h]

)
,

where {D̃i, i= 1, . . . , n} represents the i.i.d. sample estimating F0 in Stage 1.
Recalling that Gn(Λ0, F0)[h] = Pn

(
m1(Λ0, F0;D)[h]

)
, it can be seen that Sn is a bounded Lips-

chitz function with respect toHr. Therefore, (B5) holds sinceHr is a Donsker class. So

−
√
nĠ

1,Λ0,F̂n
(Λ̂n −Λ0)[h]

=
√
n(Gn −G)(Λ0, F0)[h] +

√
nĠ2,Λ0,F0

(F̂n − F0)[h] + op(1)
d−→N(0, σ2

1 [h]),

where σ2
1 [h] =E

(
m1(Λ0, F0;D)[h] + κ(Λ0, F0;D)[h]

)2
. This completes the proof of Theorem 4.

8.6. Proof of Theorem 5

(i) Note that

Qn =
√
nPn

(
Vn
(
Λ̂1, Λ̂2, hn, F̂n

))
=
√
nPn

(
Vn
(
Λ̂1,Λ0, hn, F̂n

))
−
√
nPn

(
Vn
(
Λ̂2,Λ0, hn, F̂n

))
:= I1 − I2.

We split I1 into three parts I1 = I11 + I12 + I13, where I11 =
√
n(Pn − P )

(
Vn
(
Λ̂1,Λ0, hn, F̂n

))
,

I12 =
√
nP
(
Vn
(
Λ̂1,Λ0, hn − h0, F̂n

))
, and I13 =

√
nP
(
Vn
(
Λ̂1,Λ0, h0, F̂n

))
. For I11, it can be

shown that |Vn
(
Λ̂1,Λ0, h, F̂n

)
|P,B . δ for h ∈ G and n−1/2 .O(δ). From (4), we have

J[](δ,G2,δ(F̂n)[h], || · ||P,B) =

∫ δ

0

(
1 + logN[](ε,G2,δ(F̂n)[h], || · ||P,B)

)1/2
dε. q

1/2
n δ.

Hence, from Lemma 3.4.3 of van de Vaart and Wellner (1996),

E

 sup
Vn∈G2,δ(F̂n)[h]

∣∣√n(Pn − P )Vn

(
Λ̂1,Λ0, h, F̂n

)∣∣
.J[](δ,G2,δ(F̂n)[h], || · ||P,B)

(
1 + J[](δ,G2,δ(F̂n)[h], || · ||P,B)/(δ2n1/2)

)
.
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It follows from d1(Λ̂1,Λ0) =Op(n
−r/(1+2r)) and ||F̂n − F0||∞ =Op(n

−1/2) that

E

 sup
Vn∈G2,δ(F̂n)[hn]

∣∣√n(Pn − P )Vn

(
Λ̂1,Λ0, hn, F̂n

)∣∣= o(1),

which yields that I11 = op(1).
For I12, by the Cauchy–Schwartz inequality and Lemma 4, we can show that

I2
12 .n

(
d2

1(hn, h0) + ||F̂n − F0||∞d1(hn, h0)
)(
d2

1(Λ̂1,Λ0) + ||F̂n − F0||∞d1(Λ̂1,Λ0)
)

= op(1).

At last, from the proof of Theorem 4, we have

I13 =
√
nĠ2,Λ0,F0

(F̂n − F0)[h0] +
√
nGn1(Λ0, F0)[h0] + op(1).

Thus, I1 =
√
nĠ2,Λ0,F0

(F̂n − F0)[h0] +
√
nGn1(Λ0, F0)[h0] + op(1). Similarly, we have

I2 =
√
nĠ2,Λ0,F0

(F̂n − F0)[h0] +
√
nGn2(Λ0, F0)[h0] + op(1).

Hence, we obtain that

Qn =

√
n

n1

√
n1(Pn1 − P )m1(Λ0, F0;D)[h0]−

√
n

n2

√
n2(Pn2 − P )m1(Λ0, F0;D)[h0] + op(1),

where Pnr is the empirical measure based on the sample from group r, r = 1,2. Since Pn1 and Pn2 are
independent, it follows that Qn converges in distribution to N(0, σ2

2).
(ii) To show that σ̂2

0−σ2
0 = op(1), we note that σ2

0 = P (m2
1(Λ0, F0;D)[h0]) and σ̂2

0 = Pn(m2
1(Λ̂0, F̂n;D)[hn]).

Then

σ̂2
0 − σ2

0 =Pn
(
m2

1(Λ̂0, F̂n;D)[hn]−m2
1(Λ0, F0;D)[hn]

)
+ Pn

(
m2

1(Λ0, F0;D)[hn]−m2
1(Λ0, F0;D)[h0]

)
+ (Pn − P )m2

1(Λ0, F0;D)[h0] := I1 + I2 + I3.

It can be easily shown that I1 = op(1) and I3 = op(1). We now consider I2. By Conditions (C1), (C3),
(C7) and (C8), we have∣∣m1(Λ0, F0;D)[hn]−m1(Λ0, F0;D)[h0]

∣∣= ∣∣m1(Λ0, F0;D)[hn − h0]
∣∣

≤ c1(N(TK,K) + 1)

(
∆

K∑
j=1

|hn,j(Y )− h0,j(Y )|+ (1−∆)

K∑
j=1

∫∞
Y S0(u)|hn,j(u)− h0,j(u)|dF0(u)∫∞

Y S0(u)dF0(u)

)

with probability 1 for some constant c1, and∣∣m1(Λ0, F0;D)[hn] +m1(Λ0, F0;D)[h0]
∣∣= ∣∣m1(Λ0, F0;D)[hn + h0]

∣∣≤ c2K(N(TK,K) + 1)

with probability 1 for some constant c2. Thus by Conditions (C2) and (C3),

E
∣∣m2

1(Λ0, F0;D)[hn])−m2
1(Λ0, F0;D)[h0]

∣∣
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≤ c
(
E(N(TK,K) + 1)4

)1/2
(
E

K∑
j=1

(
hn,j(U)− h0,j(U)

)2)1/2

= o(n−1/2(1+2r))→ 0.

This completes the proof of Theorem 5.
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Supplementary Materials

Appendix A: Proofs of Lemmas 1–5

Proof of Lemma 1

By Jensen’s inequality, we have

Pm(Λ0, F0;D)− Pm(Λ, F0;D) =P (− log(L(Λ, F0;D)/L(Λ0, F0;D)))

≥− logP (L(Λ, F0;D)/L(Λ0, F0;D))

=0. (A.1)

This equality holds if and only if L(Λ, F0;D) = L(Λ0, F0;D) a.e. P . By Jensen’s inequality, we have

P
(
L(Λ, F0;D)/L(Λ0, F0;D)

)
=P
(
E4N |∆,Y,T ,K

[
L(Λ, F0;D)/L(Λ0, F0;D)

])
=P

(
E4N |∆,Y,T ,K

[(
exp

{ K∑
j=1

[
4Nj log

( 4Λj(Y )

4Λ0j(Y )

)
−
(
4Λj(Y )−4Λ0j(Y )

)]})∆

×
(∫ ∞

Y
S(u)dF0(u)

/∫ ∞
Y

S0(u)dF0(u)
)1−∆

])

≥P

((
exp

{ K∑
j=1

[
4Λ0j(Y ) log

( 4Λj(Y )

4Λ0j(Y )

)
−
(
4Λj(Y )−4Λ0j(Y )

)]})∆

*The first two authors contribute equally to this work.

1



2

×

(
1

F 0(Y )

∫ ∞
Y

exp
{ K∑
j=1

[
4Λ0j(Y ) log

( 4Λj(Y )

4Λ0j(Y )

)

−
(
4Λj(Y )−4Λ0j(Y )

)]}
dF0(u)

)1−∆)

=P

(
∆ exp

{
−

K∑
j=1

[
4Λj(Y )φ

(4Λ0j(Y )

4Λj(Y )

)]}

+
1−∆

F 0(Y )

∫ ∞
Y

exp
{
−

K∑
j=1

[
4Λj(u)φ

(4Λ0j(u)

4Λj(u)

)]}
dF0(u)

)}

=

∫
exp

{
−Λ(u1, u2)φ

(Λ0(u1, u2)

Λ(u1, u2)

)}
dµ1(u1, u2), (A.2)

where Λ(u1, u2) = Λ(u1)−Λ(u2), and φ(x) = x log(x)−x+1≥ 0 with equality if and only if x= 1.
Since the equality in (A.2) holds if and only if L(Λ, F0;D) = L(Λ0, F0;D) a.e. P , which is equivalent
to
∫

exp
{
−Λ(u1, u2)φ

(
Λ0(u1,u2)
Λ(u1,u2)

)}
dµ1(u1, u2) = 1, i.e., Λ = Λ0 a.e. with respect to µ1. Combin-

ing this with (A.1) yields that Pm(Λ, F0;D) has the unique maximizer at Λ = Λ0 a.e. with respect to
µ1 or d1(Λ,Λ0) = 0. In addition, noting the relation that d1(Λ1,Λ2)/2≤ d2(Λ1,Λ2)≤M1d1(Λ1,Λ2)
by (4.5) in Wellner and Zhang (2000) and P (K ≤M) = 1 for M = τ/s0 from Condition (C7), the
metrics d1 and d2 are equivalent. Therefore, Pm(Λ0, F0;D)−Pm(Λ, F0;D)≥ 0 with equality if and
only if Λ = Λ0 a.e. with respect to µ2. This completes the proof of Lemma 1.

Proof of Lemma 2

First, we claim that the class {Λ : Λ ∈ Ψ,Λ is uniformly bounded} is Donsker by noting that Ψ is
the monotone and uniformly bounded functional class. As ωj(u) = 4Nj log4Λj(u) − 4Λj(u) is
Lipschitz and square integrable on [0, τ) from (C2), (C7) and (C8), it belongs to the Donsker class by
Theorem 2.10.6 of van der Vaart and Wellner (1996). By P (K ≤M) = 1 for M = τ/s0 from Condi-

tion (C7), both
K∑
j=1

ωj(u) and S(u) belong to the Donsker class by Theorem 2.10.6 of van der Vaart and

Wellner (1996). By Theorem 2.10.3 of van der Vaart and Wellner (1996), {
∫∞
Y S(u)dF (u),Λ ∈Ψ, F ∈

F} is Donsker. Conditions (C1)-(C3) and (C7)-(C8) ensure that log
∫∞
Y S(u)dF (u)<∞, which yields

that {log
∫∞
Y S(u)dF (u),Λ ∈Ψ, F ∈ F} is Donsker from Theorem 2.10.6 of van der Vaart and Well-

ner (1996). This completes the proof of Lemma 2.

Proof of Lemma 3

We only show that (2) of Lemma 3 holds by two steps as (3) and (4) of Lemma 3 can be obtained
similarly.

Step (i) We construct the bracketing set of the class Gδ(F ).
Under Condition (C6), it follows from Shen and Wong (1994) that there exists a set of brackets

{[Λlv,Λrv] : d1(Λrv,Λ
l
v)≤ ε, v = 1, . . . , (δ/ε)c1qn} to cover Φn for any ε < δ.

Next, we show that for sufficiently small ε > 0 and δ > 0, there exist positive constants γ1

and γ2 such that 4Λrvj(u) − 4Λlvj(u) ≤ γ1 and 4Λlvj(u) ≥ γ2 for all u − Tk,j ∈ [0, τ ] and
v = 1, . . . , (δ/ε)c1qn .
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In fact, for any v = 1, . . . , (δ/ε)c1qn , there is Λ ∈ Ψnδ such that d1(Λrv,Λ) ≤ ε and d1(Λ,Λlv) ≤
ε, which implies that d1(Λrv,Λ0) ≤ ε1 (ε1 =

√
ε2 + δ2) and d1(Λlv,Λ0) ≤ ε1. By d1(Λ1,Λ2)/2 ≤

d2(Λ1,Λ2) ≤M1d1(Λ1,Λ2) and the boundness of K, the metrics d1 and d2 are equivalent. Thus,
for any Λ ∈Ψnδ , we have d2(Λrv,Λ0)≤M1ε1 and d2(Λlv,Λ0)≤M1ε1. Then Lemma 7.1 of Wellner
and Zhang (2007) indicates that sup

u∈[0,τ ]
|Λrv(u) − Λ0(u)| ≤ ε2 and sup

u∈[0,τ ]
|Λlv(u) − Λ0(u)| ≤ ε2 for

a sufficiently small ε2 > 0 (ε2 can be taken as (M1ε1/c)
2/3 in view of Lemma 7.1 in Wellner and

Zhang (2007)). It follows that4Λrvj(u)≤4Λ0j(u)+2ε2 and4Λlvj(u)≥4Λ0j(u)−2ε2. Therefore,
taking γ1 = 4ε2 and γ2 = s0/M0 − 2ε2, where s0 and M0 are defined as in (C7) and (C8), we have
4Λrvj(u)−4Λlvj(u)≤ γ1 and4Λlvj(u)≥ γ2.

Define

Al1,v =

K∑
j=1

[
4Nj{log4Λlvj(Y )− log4Λ0j(Y )} − {4Λrvj(Y )−4Λ0j(Y )}

]
,

Ar1,v =

K∑
j=1

[
4Nj{log4Λrvj(Y )− log4Λ0j(Y )} − {4Λlvj(Y )−4Λ0j(Y )}

]
,

and write ω0,j(u) =4Nj log4Λ0j(u)−4Λ0j(u).

It can be seen that
K∑
j=1
{ωj(Y )− ω0j(Y )} ∈ [Al1,v,A

r
1,v] for some v = 1,2, . . . , (δ/ε)c1qn . Taking

Ãlv(u) =

K∑
j=1

{
4Nj log4Λlvj(u)−4Λrvj(u)− log4Nj !

}
,

Ãrv(u) =

K∑
j=1

{
4Nj log4Λrvj(u)−4Λlvj(u)− log4Nj !

}
),

Al2,v = log

(∫ ∞
Y

exp{Ãlv(u)}dF (u)

)
− log

(∫ ∞
Y

S0(u)dF (u)

)
,

Ar2,v = log

(∫ ∞
Y

exp(Ãrv(u))dF (u)

)
− log

(∫ ∞
Y

S0(u)dF (u)

)
,

we have log(
∫∞
Y S(u)dF (u))− log(

∫∞
Y S0(u)dF (u)) ∈ [Al2,v,A

r
2,v] for some v = 1,2, . . . , (δ/ε)c1qn .

Therefore, m(Λ, F ;D)−m(Λ0, F ;D) ∈ [Llv,L
r
v] for some v = 1,2, . . . , (δ/ε)c1qn , where

Llv = ∆Al1,v + (1−∆)Al2,v, Lrv = ∆Ar1,v + (1−∆)Ar2,v. (A.3)

(ii) We show that ||Lrv −Llv||2P,B . ε2, where Llv and Lrv are defined as in (A.3).
Note that

|Lrv −Llv| ≤∆|Ar1,v −Al1,v|+ (1−∆)|Ar2,v −Al2,v| := I1 + I2,

where

I1 = ∆
∣∣∣ K∑
j=1

(
4Nj [log4Λrvj(Y )− log4Λlvj(Y )] + [4Λrvj(Y )−4Λlvj(Y )]

)∣∣∣.
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Since log y = logx+ (x+ ξ(y− x))−1(y− x) for 0< x≤ y and ξ ∈ (0,1), we have

log4Λrvj ≤ log4Λlvj + γ−1
2 (4Λrvj −4Λlvj).

Taking ε2 ≤ s0/(4M0), it yields that

I1 ≤∆

K∑
j=1

(
4Nj | log4Λrvj(Y )− log4Λlvj(Y )|+ |4Λrvj(Y )−4Λlvj(Y )|

)

≤c(N(TK,K) + 1)∆

K∑
j=1

|4Λrvj(Y )−4Λlvj(Y )|.

Similarly, using Condition (C3), we can show that

I2 ≤(1−∆)|Ar2,v −Al2,v|

≤c(N(TK,K) + 1)
1−∆

F (Y )

∫ ∞
Y

K∑
j=1

|4Λrvj(u)−4Λlvj(u)|dF (u).

Therefore, by Condition (C3), we obtain that

||Lrv −Llv||2P,B ≤P
(
|Lrv −Llv|2 · e|L

r
v−Llv |

)
.P

(
ecN(TK,K)(N(TK,K)2 + 1)

[
∆

K∑
j=1

|4Λrvj(Y )−4Λlvj(Y )|2

+
1−∆

F (Y )

∫ ∞
Y

K∑
j=1

|4Λrvj(u)−4Λlvj(u)|2dF (u)

])

.ε2.

Thus, it follows from (i) and (ii) that

logN[](ε,Lη,δ, || · ||P,B)≤ cqn log(δ/ε).

This completes the proof of Lemma 3.

Proof of Lemma 4

(i) Using integration by parts, we have(∫ ∞
y

φ(x)d(F (x)− F0(x))

)2

=

([
φ(x)(F (x)− F0(x))

]∞
y
−
∫ ∞
y

φ̇(x)(F (x)− F0(x))dx

)2
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≤

(
|φ(y)(F (y)− F0(y))|+

∫ ∞
y
|φ̇(x)|dx · ||F (x)− F0(x)||∞

)2

=

(
|φ(y)(F (y)− F0(y))|+

∫ ∞
y

|φ̇(x)|
f0(x)

dF0(x) · ||F (x)− F0(x)||∞

)2

.
∫ ∞
y

φ̇2(x)dF0(x) · ||F − F0||2∞ + φ2(y)||F − F0||2∞

by Condition (C4).
(ii) Using the fact that

log(x)− log(x0) =
h

x0
− h2

(xξ)2

for h= x− x0 and xξ = x0 + ξh with some ξ ∈ (0,1), we have

P
(
m(Λ, F ;D)−m(Λ, F0;D)

)
=P

(
(1−∆)

∫∞
Y S(u)d[F (u)− F0(u)]∫∞

Y S(u)dF0(u)

)
− P

(
(1−∆)

(∫∞
Y S(u)d[F (u)− F0(u)]∫∞

Y S(u)dF ξ(u)

)2)
:=I1 − I2,

where F ξ = F0 + ξ(F − F0) for some ξ ∈ (0,1). For I1, we set

g(t) =

∫∞
Y exp

( K∑
j=1

[
4Nj log(4Λ0j + thj)− (4Λ0j + thj)− log4Nj !

])
d[F (u)− F0(u)]

∫∞
Y exp

( K∑
j=1

[
4Nj log(4Λ0j + thj)− (4Λ0j + thj)− log4Nj !

])
dF0(u)

with hj =4Λj −4Λ0j . Then I1 = P ((1−∆)g(0)) + P ((1−∆)ġ(ξ)) for some ξ ∈ (0,1). We first

note that P ((1−∆)g(0)) = P
(

(1−∆)[F0(Y )− F (Y )]/F 0(Y )
)

. In fact, using
∑
4N

to express the

summation regarding to4N running through its all possible values, we have

P
(

(1−∆)g(0)
)

=P
(

(1−∆)E4N |∆=0,Y,T ,K(g(0))
)

=P

(
(1−∆)

∫∞
Y

∑
4N

S0(u)d[F (u)− F0(u)]

F 0(Y )

)

=P

(
(1−∆)

∫∞
Y d[F (u)− F0(u)]

F 0(Y )

)

=P

(
(1−∆)

F0(Y )− F (Y )

F 0(Y )

)
.
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Moreover,

ġ(ξ) =

∫∞
Y Sξ(u)

K∑
j=1

Aξ,j(u)hj(u)d[F (u)− F0(u)]∫∞
Y Sξ(u)dF0(u)

−

∫∞
Y Sξ(u)d[F (u)− F0(u)] ·

∫∞
Y Sξ(u)

K∑
j=1

Aξ,j(u)hj(u)dF0(u)(∫∞
Y Sξ(u)dF0(u)

)2

:=I11 − I12,

where 4Λξj =4Λ0j + ξ(4Λj −4Λ0j), and Aξ,j(u) and Sξ(u) represent the values of Aj(u) and
S(u) at 4Λj(u) =4Λ0j(u) + ξhj for ξ ∈ (0,1), respectively. We use these notations in the sequel
proofs as well. Then, using the conclusion of part (i) and the Cauchy–Schwarz inequality, we have

|P ((1−∆)I11)|=

∣∣∣∣∣P
(

(1−∆)

∫ ∞
Y

[(Sξ(u)− S0(u)) + S0(u)]

K∑
j=1

Aξ,j(u)hj(u)

× d[F (u)− F0(u)]
1∫∞

Y S0(u)dF0(u)
·
∫∞
Y S0(u)dF0(u)∫∞
Y Sξ(u)dF0(u)

)∣∣∣∣∣
=

∣∣∣∣∣P
({

(1−∆)

∫ ∞
Y

ξSξ∗(u)
[ K∑
j=1

Aξ∗,j(u)hj(u)
]

×
[ K∑
j=1

Aξ,j(u)hj(u)
]
d[F (u)− F0(u)] · 1∫∞

Y S0(u)dF0(u)

+ (1−∆)

∫ ∞
Y

S0(u)

K∑
j=1

Aξ,j(u)hj(u)d[F (u)− F0(u)]
1∫∞

Y S0(u)dF0(u)

})
(1 + op(1))

∣∣∣∣∣
= 2ξ

∣∣∣∣∣P
(

1−∆

F 0(Y )

∫ ∞
Y

K∑
j=1

h2
j (u)

4Λ0j(u)
d[F (u)− F0(u)]

)
(1 + op(1))

∣∣∣∣∣
. d1(Λ,Λ0)||F − F0||∞,

where 4Λξ∗j (u), Aξ∗,j(u) and Sξ∗(u) are defined similarly as 4Λξj(u), Aξ,j(u) and Sξ(u) for some
ξ∗ ∈ (0, ξ). Similar to the proof of I11, it can be seen that |P ((1−∆)I12)| . d1(Λ,Λ0)||F − F0||∞
and |P ((1−∆)I2)|. ||F − F0||2∞. Thus,

sup
Λ∈Ψ0

δ

∣∣∣P(m(Λ, F ;D)−m(Λ, F0;D)− (1−∆)
F0(Y )− F (Y )

F 0(Y )

)∣∣∣
≤|P ((1−∆)I11)|+ |P ((1−∆)I12)|+ |P ((1−∆)I2)|

.d1(Λ,Λ0)||F − F0||∞ + ||F − F0||2∞.
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This completes the proof of Lemma 4.

Proof of Lemma 5

The lemma follows from Theorem 5.55 of van der Vaart (1998). For each n ∈N, j ∈ Z and M > 0,
let Sn,j,M be the set

{Λ ∈Ψn : 2j−1rn < d1(Λ,Λ0)≤ 2jrn, d(F,F0)≤ 2−Md1(Λ,Λ0)}.

Then the intersection of the events Λ̂n ∈ Ψn and d1(Λ̂n,Λ0) ≥ 2M (rn + d(F,F0)) is contained
in the union of the events {Λ̂n ∈ Sn,j,M} over j ≥ M . By the definition of Λ̂n, the supremum
of Pn(m(Λ, F ;D) −m(Λ0, F ;D)) over the set of parameters Λ ∈ Sn,j,M is not less than −Rn =

−Op(r2
n) on the event {Λ̂n ∈ Sn,j,M}. So we conclude that for some constant c,

P ({d1(Λ̂n,Λ0)≥ 2M (rn + d(F,F0)), Λ̂n ∈Ψn})

≤
∑

j≥M,2j≤δ/rn

P

(
sup

Λ∈Sn,j,M
Pn(m(Λ, F ;D)−m(Λ0, F ;D))≥−cr2

n

)

+ P (d1(Λ̂n,Λ0)≥ δ) + P (Rn ≥ cr2
n). (A.4)

Since Λ̂n is consistent for Λ0 and Rn = Op(r
2
n), the last two terms on the right side converge to 0

as n→∞ for every δ > 0. Then for every j involved in the sum, we have for every Λ ∈ Sn,j,M and
sufficiently large M ,

P (m(Λ, F ;D)−m(Λ0, F ;D)) .− d2
1(Λ,Λ0) + d2(F,F0) + d1(Λ,Λ0)d(F,F0)

.− (1− 2−M − 2−2M )d2
1(Λ,Λ0)≤−c122jr2

n

for some constant c1. Taking large enough M such that c≤ c122M−1 and using the Markov’s inequal-
ity, we have for j ≥M ,

P
(

sup
Λ∈Sn,j,M

Pn(m(Λ, F ;D)−m(Λ0, F ;D))≥−cr2
n

)
≤P
(

sup
Λ∈Sn,j,M

(Pn − P )(m(Λ, F ;D)−m(Λ0, F ;D))≥ c122j−1r2
n

)
≤ 1

c122j−1r2
n
E sup

Λ∈Sn,j,M
|(Pn − P )(m(Λ, F ;D)−m(Λ0, F ;D))|

≤ φn(2jrn)

c122j−1r2
n
√
n
. (A.5)

Since φn(δ)/δβ is decreasing for some β < 2, then φn(c2rn) ≤ cβ2φn(rn) ≤ cβ2
√
nr2
n for c2 > 1.

Therefore,

φn(2jrn)

c122j−1r2
n
√
n
≤ c32βj

√
nr2
n

22jr2
n
√
n
≤ c32−(2−β)j . (A.6)
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Equations (A.4)–(A.6) yield that

P (d1(Λ̂n,Λ0)≥ 2M (rn + d(F,F0)))≤
∑
j≥M

c32−(2−β)j

as M →∞, which means that

d1(Λ̂n,Λ0) =Op(rn + d(F,F0)).

This completes the proof of Lemma 5.
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