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Abstract. Coronavirus disease 2019 (COVID-19), the pandemic that
is spreading fast globally, has caused over 165 million confirmed cases.
Apart from the reverse transcription polymerase chain reaction (RT-
PCR), the chest computed tomography (CT) is viewed as a standard
and effective tool for disease diagnosis and progression monitoring. We
propose a diagnosis and prognosis model based on graph convolutional
networks (GCNs). The chest CT scan of a patient, typically involv-
ing hundreds of sectional images in sequential order, is formulated as
a densely connected weighted graph. A novel distance aware pooling is
proposed to abstract the node information hierarchically, which is robust
and efficient for such densely connected graphs. Our method, combining
GCNs and distance aware pooling, can integrate the information from all
slices in the chest CT scans for optimal decision making, which leads to
the state-of-the-art accuracy in the COVID-19 diagnosis and prognosis.
With less than 1% number of total parameters in the baseline 3D ResNet
model, our method achieves 94.8% accuracy for diagnosis. It has a 2.4%
improvement compared with the baseline model on the same dataset.
In addition, we can localize the most informative slices with disease le-
sions for COVID-19 within a large sequence of chest CT images. The
proposed model can produce visual explanations for the diagnosis and
prognosis, making the decision more transparent and explainable, while
RT-PCR only leads to the test result with no prognosis information. The
prognosis analysis can help hospitals or clinical centers designate medical
resources more efficiently and better support clinicians to determine the
proper clinical treatment.
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1 Introduction

Coronavirus disease 2019 (COVID-19) has resulted in an ongoing pandemic in
the world. To control the sources of infection and cut off the channels of transmis-
sion, rapid testing and detection are of vital importance. The reverse transcrip-
tion polymerase chain reaction (RT-PCR) is a widely-used screening technology
and viewed as the standard method for suspected cases. However, this method
highly relies upon the required lab facilities and the diagnostic kits. In addi-
tion, the sensitivity of RT-PCR is not high enough for early diagnosis [1, 5]. To
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mitigate the limitations of RT-PCR, the computed tomography (CT) has been
widely used as an effective complementary method, which can provide medical
images of the lung area to reveal the details of the disease and its prognosis [7, 3],
for which RT-PCR cannot. Additionally, CT has also been proved to be useful
in monitoring the COVID-19 disease progression and the therapeutic efficacy
evaluation [12, 9].

The chest CT slices of a patient have a sequential and hierarchical data struc-
ture. The relationship between slices possesses more information than the order
of the slices. The adjacent ones with the same abnormality could be considered
as one lesion. The slices containing the same type of lesions may not be contin-
uous as the lesions are distributed in various lung parts. We propose a diagnosis
and prognosis system that combines graph convolutional networks (GCNs) and
a distance aware pooling, which integrates the information from all slices in
the chest CT scans for optimal decision making. Our major contributions are
three-fold: (1) Owing to the sequential structure of CT images, this is the first
work to utilize GCNs to extract node information hierarchically, and conduct
both diagnosis and prognosis for COVID-19. The prognosis can help facilitate
medical resources, e.g., ventilators or admission to Intensive Care Units (ICUs),
more efficiently by triaging mild or severe patients. (2) A novel pooling method
called distance aware pooling, is proposed to aggregate the graph, i.e., the pa-
tient’s CT scan, effectively. The new pooling method integrated with GCNs can
aggregate a densely connected graph efficiently. (3) The new model can localize
the most informative slices within a chest CT scan, which significantly reduces
the amount of work for radiologists.

2 Methodology

We propose a GCN-based diagnosis and prognosis method that models the se-
quential slices of CT scans hierarchically. To downsample and learn graph-level
representation from the input node features, a novel distance aware pooling
method is proposed. In this paper, the node features refer to the slices in a CT
scan. The model gradually extracts information from the slice level to the patient
level by graph convolution and pooling. Eventually, a higher-level representation
is learned, and further used for diagnosis, prognosis, and lesion localization. The
schema of our model is illustrated in Figure 1, which is composed of GCNs,
pooling modules, a multilayer perceptron (MLP) classifier, and a one-drop lo-
calization module. The graph convolution-based method can integrate all slices
in the chest CT scans for optimal decision making.

Furthermore, we propose the one-drop localization to localize the most infor-
mative slices and reduce redundancies, so that radiologists may focus on those
recommended slices with the most suspected lesion areas. Consequently, the pro-
posed model can produce visual explanations for the diagnosis and prognosis.
We argue that the localized slices may help uncover how a given classification
method arrives at the conclusion. Specifically, it might help reveal if a method
is merely overfitting on the training data by examining the slices it attends to.
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Fig.1: Schema of our model structure. The CT scan of one patient is converted to
a densely connected graph. The GCN and the Distance Aware Pooling method are
integrated to learn a graph-level representation. At each of the two layers, the node
embedding are learned by GCN, and the cluster membership is calculated by the Dis-
tance Aware Pooling method. The aggregated graph, which is on the top right corner,
is passed to a MLP. Meanwhile, the one-drop localization can localize the most infor-
mative slices in the CT scan in a weakly supervised manner.

Conversely, it may also be used to identify the intrinsic dataset bias, notably the
data acquisition bias [2], guiding the dataset collection process.

2.1 Problem statement

Let G (V, E) be a patient’s CT scan graph, with |V| = N nodes and |E| edges,
where | - | represents the cardinality of a set. For each v; € V, x; is the corre-
sponding d-dimensional vector. Let X € RV*? be the node feature matrix, and
AW ¢ RVXN be the weighted adjacency matrix. Each entry in A% is defined
based on cosine similarity, which is A?fj-] =< xi,x; >/ - [|25]))

Each graph G has a label y. For diagnosis, the label represents its class from
normal, common pneumonia, and COVID-19. For prognosis, the class indicates
whether a COVID-19 positive patient develops into severe/critical illness status.
Thus, the diagnosis and prognosis of COVID-19 is a task of graph classification.
Given a training dataset T = {(G1,y1),..., (G, yn)}, the goal is to learn a
mapping f : G — y, which classifies a graph G into the corresponding class .
Our model is composed of two modules: f; includes node convolution and feature
pooling, and fo involves a MLP classifier. At each layer of f;, node embeddings
and cluster membership are learnt iteratively. The first module can be written as
f1:G — GP, where GP is the pooled graph with fewer nodes and a hierarchical
feature representation. The second module is fo : GP — y, which utilizes the
graph-level representation learnt for patient diagnosis and prognosis. The two
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modules are integrated in an end-to-end fashion. Thus, the cluster assignment
is learnt merely based on the graph classification objective.

2.2 Node convolution and feature pooling

Node convolution Node convolution applies the graph convolutional net-
work to obtain a high-level node feature representation in the feature matrix
X. Although several methods exist to construct the convolutional network,
the method recommended by [8] is effective for our case, which is given by
XD = 5(vVDOAWDVDOXOWWO) where DO is the diagonal degree
matrix of A*¥() — I, and W € R¥** is learnable weight matrix at the [-
th layer. Due to the application of feature pooling, the topology of the graph
changes at each layer, and thus the dimension of matrices involved are reduced
accordingly.

Distance aware pooling method We propose an innovative pooling method,
which includes graph-based clustering and feature pooling. Below, we outline the
pooling module and illustrate how it is integrated into an end-to-end GCN based
model. Empirically, it is shown to be more robust for densely connected graphs.
The overall structure of the pooling method is shown in Figure 2.

e Improved receptive field. The concept of the receptive field, RF', used
in the convolutional neural network (CNN) was extended to GNNs [11]. They
defined RF"™°% as the number of hops required to cover the neighborhood of a
given node, such that given a chosen node, a cluster can be obtained based on
a fixed receptive field h. However, this design may not be applicable to densely
connected graphs, because one node may be connected to most of the nodes in
the graph even given a small value of h. Hence, we define an improved receptive
field for densely connected graphs RF? denoted by h¢. It is a radius centered at a
given node and retains the edge weight information in the clustering process. The
value of h? is not restricted to integers. Define NV'(v;) as the local neighborhood
of the node v;, and N (v;) as the RF? neighborhood of the node v; with a
radius h?, and Vv; € N(v;), v; and v; are connected by the edge (v;, v;).

e Node clustering. Inspired by the clustering and ranking ideas mentioned
in [11] and [6], we propose a local node clustering, and score ranking method.
Each node is considered as a center of a cluster for a given h?. Then, we score
all the clusters and choose the top k proportion of them to represent the next
layer’s nodes with pooled feature values, where k is a hyperparameter.

e Clustering ranking. Given a node v; and a radius h%, N} (v;) is the corre-
sponding RF? neighborhood. Let 1;(v;) be the index set of the nodes in N,a (v;).
Define the distance matrix A% as A% =1 — A°¥ where 1 is the matrix with
all entries of 1’s. The cluster score is defined as a; = 3=, o1, () Adis [ Nya(vi)],
where m # n. If «; is small, nodes in Nya(v;) are close to each other. The top k
proportion of clusters form the next layer’s nodes.

e Selecting cluster centers. We define V; = Nv;] N Nya(v;), Yo; €
Npa(v;) as the set of nodes connected to v in Nya(v;), where Nv;] is the closed
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Fig. 2: The structure of the Distance Aware Pooling method with a numeric example.
Four steps mentioned in the above figures are node clustering, clustering ranking,
selecting cluster centers, and center node feature pooling, which correspond to those
mentioned in Section 2.2. In this figure, the proposed center in the node clustering step
is node v = 2, and the corresponding RF? neighborhood within h¢ = 0.5 are nodes
0, 2, and 4. It should be noted that the proposed center may not be the final center
for this cluster. The cluster score a; of each cluster with proposed center v; = i can be
calculated. With «;, the top k proportion clusters could be decided. In the selecting
cluster centers step, b is the average of each row sum, and node vy is still chosen as
the center with the least average distance value. In the center node feature pooling
step, w, is the weight of nodes derived from b. In this way, we can derive the weighted
pooled center feature vector.

neighborhood of the node v;. Let l(v;) be the index set of the nodes in V;. The
node score is bj = > .y, () A2 /|V;|. The node with the smallest value of b; is
chosen as the cluster center, and represents a new node in the next layer.

e Center node feature pooling. Based on the node scores, we rank the
nodes in V; and assign a weight w, to x,, where r € |2<’Uj). Let b=1—b. The
weight vector w is defined as w, = IA)T/(Zieb(vj) b; + €), where 1 is a vector with
all 1’s, € is an extremely small positive value to avoid 0’s in the denominator,
and b is the vector containing all the weights of nodes in V;. The value of the
pooled center feature is defined as @ = X, w, and then «? is used as the center
feature representing Nj,q (v;).

e Next layer node connectivity. Following the idea in [15], the connec-
tivity of the nodes in the next layer is preserved as follows. According to the
above ranking and pooling methods, a pooled graph GP with the node set VP is
obtained. The next step is to decide the pooled adjacency matrix A®% . Define
matrix S such that the columns of S are the top k£ clusters’ weight vectors w.
Hence, the pooled adjacency matrix is defined as A*¥P = §T A2di G,
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2.3 Classification and Localization Based on Pooled Graphs.

Graph classification A hierarchical representation for each patient is ab-
stracted by the above GCNs with distance aware pooling. The representation
is an N’ x D’ feature matrix, where N’ is the number of clusters and D’ is the
number of features in each cluster. For each feature, the mean and the maximum
over the N’ clusters are calculated. Subsequently, we obtain a 2D’ feature vec-
tor. The first and second D’ elements are the mean and maximal values of each
feature. Then, an MLP classifies the 2D’ feature vector into one of the three
classes: COVID-19, common pneumonia, or normal.

Weakly supervised informative CT slices localization. Localizing the CT
slices with lesions is also vital for the diagnosis. Therefore, we propose the one-
drop localization to select the most informative CT slices for the model to make
a decision. This method does not require mask annotation for lesion, learned
in a weakly supervised manner. We are inspired by the backward elimination
of stepwise regression used for knowledge discovery [4], an automatic procedure
that integrates the variable selection. For each patient with the N’ x D’ feature
matrix, we first predict the target class using the above MLP classifier. Then,
we occlude one cluster each time to obtain N’ new feature matrices with an
equal size of (N’ — 1) x D’. For each of the new feature matrices, the score of
the target class is calculated by the same MLP classifier. The occluded cluster
with the lowest score from the N’ results are chosen. Since ignoring this cluster
leads to the lowest score of the target class, the cluster should contain the most
crucial information. Then, the cluster center is determined and the top k* CT
slices with the highest similarity to it are further localized.

3 Experiments and Results

For diagnosis and prognosis, we compare our model with the baseline, a 3D
ResNet-18 classification network [16], and the state-of-the-art graph classifica-
tion methods. Moreover, we appraise whether the proposed method can deliver
meaningful and interpretable clusters on the input chest CT scans by comparing
the localization results with the slices containing lesions.

3.1 Dataset and Implementation Details

Dataset We utilize the CT dataset from the 2019 Novel Coronavirus Resource
(2019nCoVR) [16]. The dataset includes the complete chest CT scans of 929
COVID-19 positive patients, 964 common pneumonia patients, and 849 healthy
individuals. The dataset also provides these patients’ clinical prognosis, whether
the patients developed into severe/critical illness status, referring to the ad-
mission to ICU, mechanical ventilation, or death. The prognosis analysis could
support the hospitals to designate medical resources more efficiently. In addition,
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Fig.3: The ROC Curve and AUC for diagnosis. ‘NCP’, ‘CP’, and ‘Normal’ indicate
COVID-19 positive patients, common pneumonia patients, and healthy individuals
respectively. The filled dots represent the performance on ‘NCP’ diagnosis of senior
radiologists with 15 to 25 years of clinical experience [16]. It shows that our method is
comparable to the senior radiologists.

the dataset summarizes the slices with lesions for COVID-19 positive and com-
mon pneumonia patients, which can be used to evaluate the one-drop localization
method. Each CT slice is normalized into the dimension 256 x 256.

Data preprocessing We applied the following two methods for chest CT scan
image feature extraction.

e CNN feature extraction. We utilize Inception V3 [14] pretrained on Im-
ageNet [13]. The feature map of the bottleneck layer, the last layer before the
flatten operation, is regarded as the node representation in the graph.

e Wavelet decomposition extraction. Considering each slice in CT scans as
a 2-dimensional signal, it can be viewed as a function with two variables, which
can be reconstructed as a summation of wavelet functions multiplying their
coefficients for a given resolution [10]. We choose the Haar wavelet function with
resolution 3. The flattened approximation matrix of the image signal, which is
of dimension 1024, is used as the feature embedding of a slice in a CT scan.

Implementation Details We use systematic sampling to ensure that 48 num-
ber of slices for each CT scan are chosen. CT scans of 60% individual are ran-
domly chosen as the training set, 25% as the test set, and the remaining 15%
for the validation. To avoid information leakage, the dataset is split according
to individuals instead of the CT scan. Similar to [17] and [15], we repeat the
data splitting aforementioned on 20 random seeds. For each random seed, the
model is trained from scratch. The maximum, average and standard deviation
of test accuracies are reported. We use five GCN layers, and a two-layer MLP
classifier. The pooling proportion k is set as 0.8. The negative log-likelihood loss
is used for graph classification. The Adam optimizer with an initial learning rate
0.0002, and a linear decay schedule is applied. For prognosis, the parameters of
GCN and pooling are initialized using those pretrained on diagnosis task. All
models are trained for 128 epochs with early stopping applied.
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3.2 Quantitative Results

(a) Performance Evaluation of COVID-19 Diagnosis

Method Feature Extractor | Average Accuracy + SD | Best Accuracy | Time (s/epoch)
GCN-DAP Inception V3 93.93% =+ 0.41% 94.80% 22.70
GCN-DAP Wavelet 83.65% + 1.01% 85.16% 20.90
GCN-ASAP Inception V3 75.20% £ 18.70% 93.74% 30.00
GCN-ASAP Wavelet 51.43% + 11.90% 81.50% 27.25

GCN-DiffPool Inception V3 71.22% + 23.73% 94.31% 18.35
GCN-HGP-SL Inception V3 93.89 % £ 0.39% 94.22% 45.60

(b) Performance Evaluation of COVID-19 Prognosis

Method Feature Extractor | Average Accuracy + SD | Best Accuracy | Time (s/epoch)
GCN-DAP Inception V3 82.70% =+ 3.90% 91.39% 7.67
GCN-DAP Wavelet 78.98% + 3.38% 84.95% 1.83
GCN-ASAP Inception V3 67.90% + 11.09% 82.80% 9.67
GCN-ASAP Wavelet 60.22% + 5.63% 72.04% 2.30

Table 1: Performance evaluation of COVID-19 diagnosis and prognosis, where ‘GCN-
DAP’ indicates the proposed GCN-based method integrated with the distance aware
pooling. ‘ASAP’, ‘DiffPool’, and ‘HGP-SL’ refer to the state-of-the-art hierarchical
pooling methods. Besides, we list the average time in seconds to complete one training
epoch for each model using a single NVIDIA V100 GPU in the column ‘Time (s/epoch)’.

Diagnosis and prognosis performance. According to the ROC Curve for
diagnosis in Figure 3, our method is comparable to the senior radiologists with
15 to 25 years of clinical experience. We also compare our method with the clin-
ically applicable AT system based on 3D ResNet-18 [16], which reached 92.49%
diagnosis accuracy. With less than 1% of total parameters, our method has an
improvement of 2.4% over this CNN-based state-of-the-art model.

In Table 1, we compared the performance of our model and GCN model with
the state-of-the-art hierarchical pooling methods, including ASAP [11], DiffPool
[15], and HGP-SL [17]. We observed that the Inception V3 feature extraction
method constantly outperforms the wavelet decomposition method under the
same model configuration. The gradient explosion occurs in around 50% of the
runs under the ASAP and DiffPool, resulting in optimization failures, while this
issue has not been witnessed during the training of our method and HGP-SL.
Thus, the standard deviations of ASAP and DiffPool are much higher. Addi-
tionally, our method outperforms HGP-SL marginally but the training of our
method is about 2 times faster. The training curves using DAP versus the afore-
mentioned hierarchical pooling methods over 20 runs are presented in Figure 4.
The figure shows that our model improves the training convergence, and DAP
consistently outperforms ASAP and DiffPool across almost all runs.

Weakly supervised lesion localization results. Besides graph classification,
we also use our model to localize the most informative CT slices for each CT
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Fig.4: Training curves of GCN diagnosis model using DAP versus three hierarchical
pooling methods over 20 runs, with varied random seeds and train-validation-test split.
The solid lines represent the mean training loss and validation accuracy, and the shade
visualizes the interval of one standard deviation. It shows that DAP consistently out-
performs ASAP and DiffPool across almost all runs, and converges much faster.

scan in the test dataset using the procedure in Section 2.3 with k£° = 10. Since
the chosen CT slices are the most decisive ones for the diagnosis, they may
contain lesions related to COVID-19 or common pneumonia. Then, we compare
our selected slices to the CT slices with lesions labeled by the dataset for each
CT scan. Considering that the CT slices in the same CT scan are sequential,
we compare the slices between the first and last slices localized by our model
with those labeled with lesions in the dataset. Among patients in the test set on
20 random seeds, the average precision and recall are 57.39% and 79.89% with
a standard deviation 3.32% and 3.94%, respectively. The localization results of
several patients are visualized in the Supplementary Material for illustration.

4 Conclusion

This paper introduces an efficient and robust GCN-based diagnosis and progno-
sis system with a distance aware pooling method. It can cluster nodes and learn
the patient-level representation hierarchically. Unlike previous diagnosis meth-
ods based on CT scans, our model can produce coarse localization highlighting
the potential slices with lesions, making the clinical decision more interpretable
and reliable. To build trust in this framework and move towards clinical use, we
should ensure that the model can explain the reason for their prediction instead
of merely outputting the result. We argue that localization can help analyze pre-
diction failure, and help researchers understand the effect of adversarial attacks
in the medical imaging domain.



1]

Bibliography

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z.,
Xia, L.: Correlation of chest ct and rt-per testing in coronavirus disease
2019 (covid-19) in china: a report of 1014 cases. Radiology p. 200642 (2020)
Biondetti, G.P., Gauriau, R., Bridge, C.P., Lu, C., Andriole, K.P.: "name
that manufacturer”. relating image acquisition bias with task complexity
when training deep learning models: experiments on head ct (2020)
Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., Cui,
J., Xu, W., Yang, Y., Fayad, Z.A., et al.: Ct imaging features of 2019 novel
coronavirus (2019-ncov). Radiology 295(1), 202-207 (2020)

Cios, K.J., Pedrycz, W., Swiniarski, R.W.: Data mining and knowledge dis-
covery. In: Data mining methods for knowledge discovery, pp. 1-26. Springer
(1998)

Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., Ji, W.: Sensitivity
of chest ct for covid-19: comparison to rt-pcr. Radiology p. 200432 (2020)
Gao, H., Ji, S.: Graph u-nets. arXiv preprint arXiv:1905.05178 (2019)
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G.,
Xu, J., Gu, X., et al.: Clinical features of patients infected with 2019 novel
coronavirus in wuhan, china. The lancet 395(10223), 497-506 (2020)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolu-
tional networks. In: International Conference on Learning Representations
(ICLR) (2017)

Liechti, M.R., Muehlematter, U.J., Schneider, A.F., Eberli, D., Rupp, N.J.,
Hotker, A.M., Donati, O.F., Becker, A.S.: Manual prostate cancer segmenta-
tion in mri: interreader agreement and volumetric correlation with transper-
ineal template core needle biopsy. European Radiology pp. 1-10 (2020)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet
representation. IEEE transactions on pattern analysis and machine intelli-
gence 11(7), 674-693 (1989)

Ranjan, E., Sanyal, S., Talukdar, P.P.: Asap: Adaptive structure aware pool-
ing for learning hierarchical graph representations. In: AAATL pp. 5470-5477
(2020)

Rodriguez-Morales, A.J., Cardona-Ospina, J.A., Gutiérrez-Ocampo,
E., Villamizar-Pena, R., Holguin-Rivera, Y., Escalera-Antezana, J.P.,
Alvarado-Arnez, L.E., Bonilla-Aldana, D.K., Franco-Paredes, C., Henao-
Martinez, A.F., et al.: Clinical, laboratory and imaging features of covid-
19: A systematic review and meta-analysis. Travel medicine and infectious
disease p. 101623 (2020)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-
Fei, L.: ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV) 115(3), 211-252 (2015).
https://doi.org/10.1007/s11263-015-0816-y


https://doi.org/10.1007/s11263-015-0816-y

[14]

[15]

[16]

[17]

Beyond COVID-19 Diagnosis 11

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 2818-2826 (2016)
Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchi-
cal graph representation learning with differentiable pooling. In: Advances
in neural information processing systems. pp. 4800-4810 (2018)

Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X., Zha, Y., Liang,
W., Wang, C., Wang, K., et al.: Clinically applicable ai system for accurate
diagnosis, quantitative measurements, and prognosis of covid-19 pneumonia
using computed tomography. Cell (2020)

Zhang, Z., Bu, J., Ester, M., Zhang, J., Yao, C., Yu, Z., Wang, C.: Hierarchi-
cal graph pooling with structure learning. arXiv preprint arXiv:1911.05954
(2019)



