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Abstract
Based on the Delaunay triangulation, we propose
the crystallization learning to estimate the con-
ditional expectation function in the framework
of nonparametric regression. By conducting the
crystallization search for the Delaunay simplices
closest to the target point in a hierarchical way,
the crystallization learning estimates the condi-
tional expectation of the response by fitting a lin-
ear model to the data points of the constructed
Delaunay simplices. The local feature of crystal-
lization circumvents the computational difficulty
of the Delaunay triangulation of the entire feature
space, which instead focuses only on the neighbor
of the target point and thus greatly expedites the
estimation for high-dimensional cases. Because
the volumes of Delaunay simplices are adaptive to
the density of data points, our method computes
neighbor data points uniformly in all directions
and thus is more robust to the local geometric
structure of the data than existing nonparamet-
ric regression methods. We prove the asymptotic
properties of the crystallization learning and con-
duct numerical experiments on both synthetic and
real data to demonstrate the advantages of our
method in estimation of the conditional expecta-
tion function and prediction of the response.

1. Introduction
Consider a regression model,

yi = E(Y |xi) + εi, i = 1, . . . , n, (1)

where xi is a d-dimensional feature point in the Euclidean
space Rd (n > d), yi is the observed response and
ε1, . . . , εn ∈ R are independent and identically distributed
(i.i.d.) random errors withE(εi) = 0 andE(ε2i ) <∞. Non-
parametric regression is a collection of methods for estimat-
ing the conditional expectation function E(Y |z) (z ∈ Rd)
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without rigid assumptions on its shape. Recent decades have
witnessed extensive research in the field of nonparametric re-
gression, including nearest-neighbor regression (Nadaraya,
1964; Watson, 1964; Cover & Hart, 1967; Benedetti, 1977;
Stone, 1977; Altman, 1992), kernel regression (Priestley
& Chao, 1972; Hardle & Gasser, 1984; Hein, 2009) and
local linear regression (Cleveland, 1979; Cleveland & De-
vlin, 1988; Fan & Gijbels, 2018). Although the consistency
of these methods has been shown under mild conditions,
their finite sample performances are sensitive to the local
geometric structure of observed feature points. As these
methods only consider the distances from the target point
z to observed feature points x1, . . . , xn in computing the
neighbor data points or assigning weights, it is likely that
the directions from z to its neighbors are not uniformly dis-
tributed, especially when z is close to the boundary of the
convex hull of feature points or jump points of the feature
data density. As a result, the (weighted) mean of neighbor
data points may be far from the target point z, leading to
large bias in estimating the conditional expectation E(Y |z).

By incorporating the Delaunay triangulation (Delaunay,
1934) into the framework of nonparametric regression, we
propose the crystallization learning which mimics the crys-
tallization process in thermodynamics and circumvents the
curse-of-dimensionality issue in the Delaunay triangulation.
Based on the DELAUNAYSPARSE algorithm (Chang et al.,
2020) which locally constructs the Delaunay simplex S(z)
containing z, we develop the crystallization search for the
Delaunay simplices closest to S(z) and estimate E(Y |z)
by fitting a local linear model to the data points of the ob-
tained Delaunay simplices. Via experiments on synthetic
and real data, our method is shown to outperform the exist-
ing ones in estimating the conditional expectation function
and predicting the response.

2. Methodology
2.1. Delaunay Interpolation

Let X be a set of n feature points x1, . . . , xn in the Euclidean
space Rd (n > d). A d-dimensional triangulation of X,
T (X), is a mesh of d-simplices {S1, . . . ,Sm} satisfying:

1. For j = 1, . . . ,m, the set of d+ 1 vertices of simplex
Sj , denoted as V(Sj), is a subset of X and does not lie
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Figure 1. (a) Graphical illustration of the empty-ball property of
the Delaunay triangulation; (b) the Delaunay triangulation; (c) a
random triangulation.

in any affine hyperplane of Rd.

2. For any j 6= k, simplices Sj and Sk are disjoint except
on their shared boundaries Sj ∩ Sk.

3. The union S1∪· · ·∪Sm is the convex hull of X, denoted
asH(X).

Since the d-simplices S1, . . . ,Sm of the triangulation T (X)
fully cover the convex hull H(X), for each internal point
z ∈ H(X), there exists a simplex S(z) ∈ T (X) such that
z ∈ S(z). Let i1(z), . . . , id+1(z) denote the indices corre-
sponding to the data points of S(z), and then there exist d+1

values γ1, . . . , γd+1 ∈ [0, 1] such that
∑d+1
k=1 γkxik(z) = z

and
∑d+1
k=1 γk = 1. Among all triangulations, the Delau-

nay triangulation is widely used for multivariate interpola-
tion (de Berg et al., 2008) due to its smoothness property.
Let Bj be the open ball whose boundary is the circum-
scribed (d− 1)-sphere of Sj . The Delaunay triangulation
of X, denoted as DT (X), is any triangulation of X such
that Bj ∩ X = ∅ for j = 1, . . . ,m. This is known as the
empty-ball property as shown in Figure 1 (a). The Delaunay
triangulation generates a mesh of simplices that are most
regularized in shape. For point set X ⊂ R2, the Delaunay
triangulation DT (X) maximizes the minimum angle in all
the triangles (2-simplices) S1, . . . ,Sm over all possible tri-
angulations (Sibson, 1978) as displayed in Figure 1 (b) and
(c). As the geometric dual of the Voronoi diagram, the De-
launay triangulationDT (X) is unique under the assumption
that X is in general position (Delaunay, 1934).

Consider the data {(xi, yi) : i = 1, . . . , n} from model (1),
the Delaunay interpolation aims to estimate the conditional
expectation function E(Y |z) for all z ∈ H(X). Generally,
there are three steps in the Delaunay interpolation: (i) con-
struct the Delaunay triangulation DT (X); (ii) find the sim-
plex S(z) ∈ DT (X); and (iii) obtain the estimator Ê(Y |z)
by optimizing a target function. For most of Delaunay inter-
polation methods, the first two steps are identical, while the
difference mainly lies in the target function. For example,
with γ1, . . . , γd+1 ∈ [0, 1] such that

∑d+1
k=1 γkxik(z) = z

Algorithm 1 DELAUNAYSPARSE (Chang et al., 2020)

1: Input: Feature points X, target point z ∈ H(X) and the
seed Delaunay simplex Sseed.

2: Let Scurrent = Sseed, AFrontier = {Sseed}, AExplored = ∅.
3: while z /∈ Scurrent do
4: Compute the set of facets of Scurrent which is visible

to z1, denoted as Fz(Scurrent).
5: for each facet F ∈ Fz(Scurrent) do
6: Grow a new Delaunay simplex Snew 6= Scurrent on

the facet F if it exists.
7: AFrontier ← AFrontier ∪ {Snew} if Snew exists and

Snew /∈ AExplored ∪ AFrontier.
8: end for
9: AExplored ← AExplored ∪ {Scurrent}.

10: AFrontier ← AFrontier \ {Scurrent}.
11: Scurrent ← the first simplex in AFrontier.
12: end while
13: Output: Simplex Scurrent.

and
∑d+1
k=1 γk = 1, the estimator of de Berg et al. (2008) is

Ê(Y |z) =
d+1∑
k=1

γkyik(z), (2)

which is the minimizer of the squared loss function∑n
i=1(yi − f(xi))2 among all continuous piecewise lin-

ear functions, f(z) =
∑m
j=1 1{z∈Sj}(αj+βT

j z). Liu & Yin
(2019) introduce a regularization function to balance the
model fitting and smoothness of the estimator. However,
all the aforementioned approaches require a complete con-
struction of DT (X), whose size grows exponentially with
respect to the dimension d. As a result, no existing algo-
rithms are feasible when the dimension d > 7 due to the
limitations of computation time/power and memory space
(Chang et al., 2020).

Alternatively, several methods have been proposed for
medium- to high-dimensional Delaunay interpolation
(Chang et al., 2018a;b; 2020). Instead of obtaining the
complete DT (X), these methods only construct the Delau-
nay simplex S(z) at each point z locally and E(Y |z) can be
estimated at a polynomial cost. For any point z ∈ H(X),
the DELAUNAYSPARSE algorithm (Chang et al., 2020)
first obtains a seed Delaunay simplex Sseed close to z. Based
on Sseed, Chang et al. (2020) find S(z) via the breadth first
search as described in Algorithm 1 and compute the es-
timator in (2). Although such an approach is computa-
tionally efficient because γ1, . . . , γd+1 are simultaneously
calculated, it only utilizes the information of d + 1 data
points {(xik(z), yik(z)) : k = 1, . . . , d+1} in the estimation.

1A facet F of the simplex Scurrent is visible to z if there exists a
internal point z′ of Scurrent such that the linear segment from z to z′
intersects F (Chang et al., 2020).
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Algorithm 2 Crystallization search

1: Input: Feature points X, target point z ∈ H(X) and
topological distance L.

2: Compute S(z) via Algorithm 1.
3: Let AFrontier = {(S(z), 0)} and NL(z) = ∅.
4: while AFrontier 6= ∅ do
5: (Scurrent, Lcurrent)← the first element in AFrontier.
6: if Lcurrent < L then
7: Compute all the facets of Scurrent, denoted as

F1, . . . ,Fd+1.
8: for j = 1, . . . , d+ 1 do
9: Grow a new Delaunay simplex Snew 6= Scurrent

on the facet Fj if it exists.
10: AFrontier ← AFrontier ∪ {(Snew, Lcurrent + 1)} if

Snew exists and Snew /∈ NL(z) ∪ AFrontier.
11: end for
12: end if
13: NL(z)← NL(z) ∪ {Scurrent}.
14: AFrontier ← AFrontier \ {(Scurrent, Lcurrent)}.
15: end while
16: Output: The set of Delaunay simplices NL(z).

This may lead to overfitting and poor estimation when the
simplex S(z) has a small volume and a poorly regularized
shape.

2.2. Crystallization Search for Delaunay Simplices

As one component of DT (X), S(z) has d + 1 facets
F1, . . . ,Fd+1, each of which is either a facet of H(X) or
the shared boundary of S(z) and one neighbor Delaunay
simplex.

Definition 1. Neighbor Delaunay simplices: Given a set
of points X and the Delaunay triangulation DT (X) =
{S1, . . . ,Sm}, simplices Sj and Sk are neighbors if and
only if the intersection Sj ∩ Sk is a shared facet of Sj and
Sk.

Inspired by Algorithm 1 (Chang et al., 2020) which searches
S(z) by growing neighbor Delaunay simplices on the facets
of the explored ones recursively, we develop the crystal-
lization search (Algorithm 2) to construct all the Delaunay
simplices within the topological distance L to S(z), de-
noted as NL(z). Figures 2 and 3 display the crystallization
search ofNL(z) with respect to a target point z ∈ H(X) and
L = 0, 1, . . . , 5 in R2 and R3, respectively. When L = 0,
only the simplex S(z) is constructed. As L increases, De-
launay simplices are constructed in a hierarchical way such
that new simplices grow on the facets of the explored ones
whose topological distance to S(z) is L − 1. The whole
process of Algorithm 2 is analogous to the crystallization
process in thermodynamics, where the search of S(z) in
step 2 plays the role of nucleation and the remaining steps

Figure 2. Crystallization search ofNL(z) with respect to a target
point z ∈ H(X) and L = 0, 1, 2 (top row), L = 3, 4, 5 (bottom
row) in R2.

Figure 3. Crystallization search ofNL(z) with respect to a target
point z ∈ H(X) and L = 0, 1, 2 (top row), L = 3, 4, 5 (bottom
row) in R3.

correspond to the crystal growth.

2.3. Crystallization Learning

Without loss of generality, let Vz,L = ∪S∈NL(z)V(S) de-
note the set of all the data points of the simplices in NL(z).
Based on the setNL(z) of Delaunay simplices topologically
closest to the target point z, we propose the crystallization
learning to estimate E(Y |z) by fitting a local linear model,
E(Y |z) = α+βTz, to all the data points in Vz,L instead of
only the d+1 data points of S(z). Consider that in DT (X),
a vertex shared by more simplices usually has a larger de-
gree in the network formed by Delaunay edges and thus is
more informative in the geometric structure of NL(z), we
estimate α and β via the weighted least squares approach

(α̂, β̂) = argmin
∑

xi∈Vz,L

wz,L(xi)(yi − α− βTxi)2, (3)
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with weight function

wz,L(xi) =

( ∑
S∈NL(z)

1{xi∈V(S)}

)
exp

(
− ‖xi − z‖22

mL(z)

)
,

where mL(z) =

( ∑
xi∈Vz,L

‖xi − z‖22

)/(
n∑
i=1

1{xi∈Vz,L}

)
.

Note that our weight function places more weights on the
data points closer to z, similar to the works of Nadaraya
(1964) and Watson (1964), and also on those shared by
more simplices in NL(z). For all xi /∈ Vz,L, the weights
are set as zero. In addition, our weight function is scale-
invariant due to the existence of normalization term mL(z),
i.e., multiplying any constant to features will not change the
weights. As a result, the obtained estimator Ê(Y |z) is only
piecewise smooth but not piecewise linear inH(X), as given
by Theorem 1 with proof in the supplementary materials.
Theorem 1. Let X be a set of n feature points x1, . . . , xn
in general position and responses y1, . . . , yn are generated
from model (1). The estimator of the crystallization learning,
Ê(Y |z), is smooth in Sk ∈ DT (X) (k = 1, . . . ,m).

2.4. Selection of L

Similar to many machine learning methods, the statistical
complexity and estimation performance of the crystalliza-
tion learning is controlled by the hyperparameter L, the
maximal topological distance from the generated neighbor
Delaunay simplices to S(z). As a small L leads to overfit-
ting and a largeLmakes Ê(Y |z) overly smooth, we propose
adapting the leave-one-out cross validation (LOO-CV) to
select L with respect to the target point z as follows.

1. Compute the Delaunay simplex S(z) containing
z and values γ1, . . . , γd+1 ∈ [0, 1] such that∑d+1
k=1 γkxik(z) = z and

∑d+1
k=1 γk = 1 via Algorithm

1, where xi1(z), . . . , xid+1(z) are the d + 1 data points
of S(z).

2. For each xik(z) ∈ S(z), apply the crystallization
learning with different candidate values of L on the
leave-one-out data excluding (xik(z), yik(z)) to estimate
yik(z). Let ξik(z),L be the squared estimation error
with respect to observation (xik(z), yik(z)) and candi-
date value L.

3. Select the optimal L̃ as

L̃ = argmin

d+1∑
k=1

γk log(ξik(z),L).

2.5. Computational Complexity

With vectorized operations in R, we reduce the average
computational complexity of Algorithm 1 from O(d2n)

(Chang et al., 2020) to O(d2 log n). However, as Algo-
rithm 1 is only implemented once, the dominant cost of
Algorithm 2 lies in the simplices growth steps (step 4-15).
Since in Algorithm 2, the number of generated Delaunay
simplices is O(dL) and the average computational com-
plexity of growing a new Delaunay simplex on the facet
of Scurrent is O(log n) with the rank-1 update suggested by
Chang et al. (2020), the average computational complexity
is O(dL log n). Table 1 shows the average runtime in com-
puting NL(z) under different scenarios, which validates the
O(dL log n) complexity of Algorithm 2.

Table 1. Average runtime (s) in computingNL(z) under different
values of topological distance L, sample size n, dimension d.

L
n = 500 n = 1000 n = 2000

d = 6 8 10 d = 6 8 10 d = 6 8 10

2 0.05 0.09 0.14 0.06 0.11 0.18 0.07 0.14 0.23
3 0.23 0.51 0.98 0.28 0.63 1.22 0.34 0.80 1.56
4 0.82 2.26 5.20 1.02 2.80 6.51 1.21 3.55 8.27

3. Connection with Other Nonparametric
Regression Methods

Similar to the two popular paradigms of nonparametric re-
gression methods, i.e., the nearest neighbor and the local
linear regression, our crystallization learning consists of
three steps in estimating the conditional expectation func-
tion E(Y |z): (i) selecting data points from X as the neigh-
bors of z according to a specific criterion; (ii) assigning
weights to the selected neighbor data points; and (iii) fitting
a local model to the selected neighbor data points.

Since our crystallization learning and the existing meth-
ods mainly differ in the first two steps, we compare our
crystallization learning with the k-nearest neighbor (k-NN)
regression and the local linear regression in the computation
of neighbor data points. We use the Euclidean distance in
the k-NN regression and the Gaussian kernel in the local
linear regression because our crystallization search of neigh-
bor data points is established on the Delaunay triangulation,
which is the geometric dual of the Voronoi diagram under
the L2 norm.

To find the k nearest neighbor data points, the k-NN regres-
sion computes and sorts the Euclidean distances from the
target point z to all the data points in X. This process can be
visualized by the left panel of Figure 4, where a circle with
center z is drawn. The radius keeps increasing until there are
k observed data points falling in or on the circle, which are
returned as the k nearest neighbors. As only the distances
are considered, it is likely that the directions from z to the k
nearest neighbors are not uniformly distributed, especially
when z is close to the boundary ofH(X) or jump points of
the feature data density. The same is true for the local linear
regression, where more weights are assigned to the direction
from z to the sample mean. In contrast, the crystallization



Crystallization Learning

Figure 4. Neighbor data points of the target point z computed by
the k-NN regression with k = 5, 10, 15, 20 (left panel) and the
crystallization learning with L = 0, 1, 2, 3 (right panel).

(a) Crystallization (b) k-NN (c) Local linear

Figure 5. The kernel density estimate of the distribution of the di-
rections from the target point z to its neighbor data points computed
by different methods under different values of the hyperparameter.
The arrow indicates the direction from the target point z to the
sample mean of X.

Figure 6. The paths of the (weighted) means of neighbor data
points computed by different methods as the value of the hyperpa-
rameter increases.

search computes neighbor data points Vz,L by constructing
Delaunay simplices, whose volumes are adaptive to the den-
sity of observed data points. As a result, the distances from z
to neighbor data points in Vz,L are different for high-density
and low-density directions. This can be seen from Figure
4, where we generate x1, . . . , x100 ∈ R2 from the density
function,

g(x) ∝
2∏
j=1

(1 + 0.6 · sign(xj)) exp(−x2j/2),

and use different methods to compute the neighbor data
points of z = (0, 1)T. The density function g(x) is discon-
tinuous at z with higher density at its right-hand side than
its left-hand side. From the left panel of Figure 4, we can
see that for all values of k, k-NN regression computes more
neighbor points at the right-hand side of z than the left-hand
side. However, this is not the case for the crystallization
learning as exhibited in the right panel of Figure 4. As L
increases, the crystallization learning searches neighbor data
points uniformly in all directions, implying the adaptation
of our method to the local geometric structure of the data.
This can also be observed in Figure 5, where the kernel
density estimate (KDE) of the distribution of the directions
from the target point z to its neighbor data points is plotted.
The neighbor data points computed by the k-NN regres-
sion and the weights assigned by the local linear regression
concentrate in the direction toward the sample mean of X,
while the KDE of the crystallization search is much closer
to a uniform distribution. As a result, the (weighted) means
of neighbor data points under the crystallization search are
closer to the target point z than existing methods as shown
in Figure 6.
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4. Asymptotic Theory
We first study the asymptotic geometric properties of the
Delaunay triangulation DT (X) under general distribution
of feature points and then prove the consistency of the crys-
tallization learning in estimating E(Y |z). All proofs are
given in the supplementary materials.

4.1. Asymptotic Geometric Properties

Lemma 1. Let X be a set of n i.i.d. feature points
x1, . . . , xn from a density g(x), which is bounded away from
zero and infinity on Rd. Then for any target point z ∈ Rd,
we have P(z ∈ H(X))→ 1 as n→∞.

By Lemma 1, the target point z falls inH(X) with asymp-
totic probability one. Thus, we only consider the inside-hull
case in Theorem 2.
Theorem 2. Let X be a set of n i.i.d. feature points
x1, . . . , xn from a density g(x), which is bounded away from
zero and infinity on Rd. For any target point z ∈ H(X) and
any ρ ∈ (0, 1), we have

T (z) = Op(n
−ρ/d),

where T (z) = max{‖xi − z‖2; xi ∈ Vz,L}.

Theorem 2 implies that all the feature points of Vz,L con-
verge to z in probability.

4.2. Consistency

Theorem 3. Let X be a set of n i.i.d. feature points
x1, . . . , xn from a density g(x), which is bounded away
from zero and infinity on Rd. Assume that the data
{(xi, yi) : i = 1, . . . , n} are generated from model (1),
where the conditional expectation function E(Y |·) is differ-
entiable on Rd, ε1, . . . , εn ∈ R are i.i.d. random errors
with E(εi) = 0 and E(ε2i ) < ∞. The estimator obtained
from the crystallization learning, Ê(Y |z) with z ∈ H(X),
satisfies

E
{
Ê(Y |z)− E(Y |z)

}2 → Rmin, as n→∞,

where Rmin = inff E{Y − f(x)}2 is the minimal value
of the L2 risk over all continuous functions f : Rd → R
and E is the expectation operator with respect to the data
{(xi, yi) : i = 1, . . . , n}.

5. Experiments
We conduct experiments on synthetic data under different
scenarios: (a) to illustrate the effectiveness of our crystal-
lization learning in estimating the conditional mean func-
tion E(Y |z); (b) to compare the estimation accuracy of
our method with existing nonparametric regression meth-
ods, including the k-NN regression using the Euclidean

distance, the local linear regression using the Gaussian
kernel, the multivariate kernel regression using the Gaus-
sian kernel (Hein, 2009) and Gaussian process models;
and (c) to validate the proposed data-driven procedure of
L selection. We also apply our method to real data to
investigate its empirical performance. Given the train-
ing data {(xi, yi) : i = 1, . . . , n}, we use the mean
squared error (MSE) under the method M, MSEM =
1

100

∑100
k=1{ÊM(Y |zk) − E(Y |zk)}2, to evaluate the ac-

curacy of the estimator ÊM(Y |z) at random target points
z1, . . . , z100 ∈ H(X).

5.1. Experiments on Synthetic Data

In the experiments on synthetic data, we consider two sce-
narios to investigate the performance of our crystallization
learning at general internal points ofH(X) and jump points
of the data density. For each scenario, we simulate 100 train-
ing datasets {(xi, yi) : i = 1, . . . , n} and corresponding
sets of target points {z1, . . . , z100} under different values of
n and d as follows.

- Scenario 1: (General internal points) For each
dataset, x1, . . . , xn are independently sampled from
the multivariate normal distribution MVN(0, Id) with
an identity covariance matrix Id. The responses
y1, . . . , yn are generated from an additive model,

Y |x ∼ N

(
d∑
j=1

cjgj(xj), 1

)
, (4)

where x = (x1, . . . , xd)
T, c1, . . . , cd ∼ N(0, 1),

gj(·) =
∑10
k=1 bjkφ(·;µjk, σ2

jk), bjk ∼ N(0, 1),
µjk ∼ N(0, 1), σ2

jk ∼ Gamma(1, 1), and
φ(·;µjk, σ2

jk) is the density of N(µjk, σ
2
jk), j =

1, . . . , d; k = 1, . . . , 10. For k = 1, . . . , 100, tar-
get point zk is generated as zk =

∑n
i=1 ωikxi, with

(ω1k, . . . , ωnk) ∼ Dirichlet(1n).

- Scenario 2: (Jump points of the data density) For
each dataset, x1, . . . , xn are sampled from the distribu-
tion,

g(x) = 2−d
d∏
j=1

(1 + 0.4 · sign(xj)) exp(−|xj |),

and responses y1, . . . , yn are generated from the ad-
ditive model (4). It is clear that the density g(x)
jumps at the point set {x ∈ Rd :

∏d
j=1 xj = 0}.

For k = 1, . . . , 100, target point zk is generated as
zk =

∑n
i=1 ωikxi ⊗ sk, where (ω1k, . . . , ωnk) ∼

Dirichlet(1n), ⊗ is the elementwise multiplication
operator, sk = (sk1, . . . , skj)

T and sk1, . . . , skj ∼
Bernoulli(0.7).



Crystallization Learning

Table 2. The averaged values of log(MSE) and standard deviations in parentheses using crystallization learning (CL) in comparison with
k-NN (k = 5, 10, k∗, where k∗ equals the size of Vz,L), local linear (LL) regression, kernel regression (KR) and Gaussian process (GP)
in estimating E(Y |z) under different scenarios, different sample sizes (n) and different dimensions of the feature space (d).

d n log(MSECL) log
(MSE5-NN

MSECL

)
log
(MSE10-NN

MSECL

)
log
(MSEk∗ -NN

MSECL

)
log
(MSELL

MSECL

)
log
(MSEKR

MSECL

)
log
(MSEGP

MSECL

)
Scenario 1 (General internal points)

5
200 -1.11(0.21) 0.23(0.09) 0.12(0.09) 0.33(0.11) 0.56(0.11) 0.57(0.11) 0.24(0.18)
500 -2.13(0.18) 0.55(0.13) 0.37(0.11) 0.45(0.13) 0.91(0.17) 0.94(0.17) 0.76(0.18)

1000 -2.04(0.18) 0.53(0.13) 0.42(0.13) 0.62(0.12) 1.18(0.19) 1.22(0.19) 0.41(0.20)
2000 -2.21(0.20) 0.48(0.14) 0.38(0.14) 0.59(0.16) 1.06(0.22) 1.08(0.21) 0.81(0.17)

10
200 -0.03(0.16) 0.28(0.09) 0.13(0.07) 0.14(0.08) 0.10(0.07) 0.12(0.07) -0.08(0.14)
500 0.01(0.21) 0.43(0.13) 0.31(0.10) 0.29(0.11) 0.47(0.12) 0.47(0.12) -0.01(0.17)

1000 -0.50(0.22) 0.37(0.14) 0.30(0.12) 0.43(0.10) 0.54(0.12) 0.53(0.12) -0.09(0.21)
2000 -0.67(0.20) 0.42(0.13) 0.33(0.12) 0.51(0.11) 0.59(0.16) 0.60(0.16) 0.10(0.14)

20
200 1.46(0.14) 0.14(0.08) -0.02(0.06) -0.01(0.06) -0.02(0.03) -0.04(0.06) 0.17(0.15)
500 1.09(0.15) 0.25(0.10) 0.11(0.07) -0.01(0.07) -0.07(0.06) -0.03(0.06) -0.18(0.16)

1000 0.92(0.18) 0.48(0.11) 0.36(0.10) 0.00(0.11) -0.10(0.08) -0.02(0.08) 0.22(0.18)
2000 0.73(0.22) 0.24(0.15) 0.24(0.12) 0.06(0.11) 0.18(0.11) 0.14(0.11) 0.15(0.19)

50
500 2.47(0.14) 0.08(0.09) -0.02(0.07) 0.02(0.05) -0.01(0.03) -0.08(0.11) 0.06(0.19)

1000 2.32(0.17) 0.08(0.12) -0.02(0.10) 0.04(0.06) -0.03(0.03) -0.13(0.12) -0.22(0.18)
2000 2.12(0.17) 0.17(0.13) 0.18(0.10) -0.01(0.06) 0.02(0.04) 0.00(0.11) -0.08(0.19)

Scenario 2: (Jump points of the data density)

5
200 -0.72(0.17) 0.34(0.05) 0.33(0.04) 0.51(0.06) 0.60(0.07) 0.70(0.07) 0.32(0.10)
500 -1.46(0.15) 0.42(0.05) 0.31(0.05) 0.44(0.06) 0.92(0.09) 1.03(0.09) 0.59(0.11)

1000 -1.94(0.13) 0.48(0.06) 0.21(0.05) 0.33(0.07) 0.99(0.10) 1.11(0.10) 0.92(0.11)
2000 -1.87(0.17) 0.46(0.05) 0.26(0.05) 0.33(0.06) 1.43(0.11) 1.53(0.11) 1.10(0.11)

10
200 0.59(0.12) 0.08(0.05) 0.03(0.04) 0.17(0.04) 0.09(0.03) 0.13(0.03) 0.14(0.09)
500 0.44(0.14) 0.18(0.04) 0.08(0.04) 0.05(0.04) 0.09(0.04) 0.15(0.04) -0.07(0.08)

1000 0.27(0.11) 0.18(0.05) 0.11(0.04) 0.18(0.04) 0.29(0.05) 0.38(0.05) -0.11(0.07)
2000 0.02(0.13) 0.23(0.04) 0.11(0.04) 0.17(0.04) 0.43(0.05) 0.49(0.05) -0.12(0.07)

20
200 1.92(0.12) 0.08(0.04) 0.03(0.03) 0.02(0.02) -0.01(0.01) -0.04(0.03) 0.04(0.07)
500 1.77(0.10) 0.14(0.05) 0.01(0.03) -0.02(0.03) -0.01(0.04) -0.02(0.02) -0.07(0.07)

1000 1.68(0.13) 0.08(0.05) 0.02(0.03) -0.05(0.03) -0.04(0.02) -0.03(0.03) -0.09(0.06)
2000 1.50(0.12) 0.11(0.05) 0.06(0.03) 0.08(0.03) 0.02(0.02) 0.09(0.03) -0.11(0.07)

50
500 2.85(0.09) 0.16(0.06) 0.05(0.04) -0.01(0.04) 0.09(0.03) 0.14(0.06) -0.04(0.08)

1000 2.90(0.09) 0.20(0.05) 0.08(0.04) -0.03(0.02) 0.03(0.02) 0.19(0.06) -0.10(0.07)
2000 2.82(0.10) 0.15(0.04) 0.08(0.03) -0.01(0.01) -0.01(0.01) 0.10(0.04) -0.12(0.07)

In both scenarios, we apply our crystallization learning and
existing methods to estimate E(Y |z) =

∑d
j=1 cjgj(zj) at

target points z1, . . . , z100. We implement the crystallization
learning with L = 3 (or L = 2) when d = 5 and 10
(or d = 20 and 50) and obtain the estimator Ê(Y |z). We
implement the k-NN regression with k = 5, 10, k∗, where
k∗ equals the size of Vz,L, and the local linear regression
and kernel regression with bandwidth h = 1.

The estimation results of our method averaged over 100
simulations under different scenarios and different values of
n and d are displayed in Table 2. For each d, the estimation
accuracy of the crystallization learning improves as the sam-
ple size increases, indicating its consistency in estimating
the conditional mean function E(Y |z) in the convex hull
H(X). For low-dimensional cases (d = 5 or 10), the crystal-
lization learning generally outperforms the existing methods
as the sample size grows in both scenarios, demonstrating

that our method is more efficient asymptotically. In scenario
1, although our method does not completely dominate the
existing ones when d = 20 or 50, its performance is still
superior or at least comparable to the existing methods. In
the high-dimensional cases (d = 20 or 50) of scenario 2,
the crystallization learning is not dominated by any existing
approaches, suggesting the robustness of our method to the
variation or sudden change of the data density. Overall,
our crystallization learning performs well and is stable in
estimating the conditional mean function E(Y |z) at general
internal points ofH(X) and jump points of the data density.

5.2. Experiments on Real Data

To illustrate the empirical performance of the crystalliza-
tion learning, we apply it to several real datasets from the
UCI repository. The first one is the critical assessment of
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(a) CASP dataset (b) Concrete dataset

(c) Parkinson’s motor UPDRS (d) Parkinson’s total UPDRS

Figure 7. Boxplots of log(MPSEM/MPSECL) corresponding to k-NN (k = 5, 10, k∗, where k∗ equals the size of Vz,L), local linear
(LL) regression, kernel regression (KR) and Gaussian process (GP) in estimating E(Y |z) under different datasets and sizes of the training
set (n).

protein structure prediction (CASP) dataset2 (Betancourt &
Skolnick, 2001) of experimental records on protein structure
prediction. The CASP dataset includes 45730 records of 9
features, where the response is the root mean squared devi-
ation (RMSD) of the residues. The second is the Concrete
dataset3 (Yeh, 1998), which consists of 1030 experimental
records of concrete compressive strength measurement. We
use the content of 7 concrete ingredients and the age of a
concrete sample to predict its compressive strength. The
last one is Parkinson’s telemonitoring dataset4 (Tsanas et al.,
2010), which is composed of 5875 voice recordings of 16
biomedical voice measures from 42 patients with early-stage
Parkinson’s disease in a six-month trial. We use these 16

2https://archive.ics.uci.edu/ml/datasets/Physicochemical
+Properties+of+Protein+Tertiary+Structure

3https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive
+Strength

4https://archive.ics.uci.edu/ml/datasets/Parkinsons

biomedical voice measures to predict the motor and total
UPDRS (unified Parkinson’s disease rating scale) scores.

For each dataset, we take 100 bootstrap samples without
replacement of size n (n = 200, 500, 1000 or 2000) for
training and 100 samples of size 100 for testing to com-
pare the crystallization learning with existing methods. To
eliminate the impact of feature correlations and scales, we
extract and standardize the principal components of fea-
tures in the training set as the observed feature points
x1, . . . , xn, and the same transformation is applied to the
testing set to obtain the target points z1, . . . , z100. We take
L = 3 for crystallization learning, implement the k-NN
regression with k = 5, 10, k∗, where k∗ equals the size
of Vz,L, and the local linear regression and kernel regres-
sion with bandwidth h = 1. As the true values of condi-
tional expectations E(Y |z1), . . . , E(Y |z100) are unknown
in real application, we quantify the performance of the
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methodM by the mean predictive squared error (MPSE):
MPSEM = 1

100

∑100
k=1{ÊM(Y |zk)− yk}2.

Figure 7 shows the comparison results averaged over 100
bootstrap samples between our method and existing ones
under different datasets and sizes of the training set (n). For
each dataset, it is clear that as n increases, the advantage of
the crystallization learning over most of existing methods
amplifies. Overall, the crystallization learning dominates all
the existing methods in most of the cases.

5.3. Experiments on L Selection

To validate the data-driven procedure of L selection pro-
posed in Section 2.4, we conduct experiments under Sce-
nario 1 of Section 5.1. With candidate values 1, . . . , 8 of
L and d = 5, 100 training datasets and corresponding sets
of target points are simulated for different sample sizes
n (n = 200, 500, 1000, 2000) respectively to investigate
whether the proposed procedure improves the estimation
accuracy of the crystallization learning.

The estimation results of our method with different can-
didate values of L and the selected L̃ averaged over 100
simulations under different sample sizes are displayed in
Figure 8. It is clear that as the sample size n increases,
the optimal L with smallest averaged value of log(MSEL)
grows. This is reasonable because that a larger n would
lead to smaller volumes of simplices in NL(z) and thus a
larger L is needed for accurate estimation. In addition, the
averaged value of log(MSEL̃) is closer to the smallest aver-
aged value of log(MSEL) when n is larger, suggesting the
effectiveness of our LOO-CV procedure in improving the
estimation accuracy.

6. Conclusions
The Delaunay triangulation is a powerful tool to partition the
feature space in a data-driven way, which has the least rough-
ness for smooth surface reconstruction. We incorporate the
Delaunay triangulation into the framework of nonparametric
regression and develop the crystallization learning proce-
dure. Without the need to triangulate the entire feature space
which becomes infeasible for high-dimensional cases, our
method conducts the Delaunay triangulation locally at each
specific target point like crystal growth. The conditional
expectation E(Y |z) at the target point z ∈ H(X) is esti-
mated by fitting a linear model to the data points of the
Delaunay simplices computed by the crystallization search.
Compared with existing nonparametric regression methods,
our method is more adaptive to the local geometric structure
of the data, which computes the neighbor data points uni-
formly in all directions and their weighted mean is closer
to the target point z. Both theoretical studies and numerical
experiments show that the crystallization learning is consis-

(a) n = 200 (b) n = 500

(c) n = 1000 (d) n = 2000

Figure 8. The averaged values of log(MSEL)− log(MSE) (L =
1, . . . , 8) and log(MSEL̃) − log(MSE) under different sample
sizes (n). Here, MSEL is the MSE corresponding to the candidate
value L and log(MSE) =

∑8
L=1 log(MSEL)/8.

tent in estimating E(Y |z) and it generally outperforms the
existing methods.

There are still some directions in which we can further de-
velop our work. Given that the crystallization learning is a
local approach, it is possible to combine it with the uniform
design and develop a global version of crystallization learn-
ing in a hierarchical way. As our method searches Nz,L
in a deterministic way, we can also develop the stochas-
tic crystallization search to reduce the boundary effect on
the estimator Ê(Y |z). Other possible extensions include
extrapolation of E(Y |z) at z /∈ H(X) with the Möbius
transformation (Zhou et al., 2019), regression problems in
other metric spaces (e.g., manifold regression and structured
output) as discussed in Hein (2009) and online regression
problems (Kuzborskij & Cesa-Bianchi, 2017).
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Indian Journal of Statistics, Series A (1961-2002), 26(4):
359–372, 1964.

Yeh, I.-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cement and Con-
crete Research, 28(12):1797–1808, 1998.

Zhou, Z., Tan, S., Xu, Z., and Li, P. Möbius transformation
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