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Abstract

This paper considers the determination of optimal retention in a stop-loss
reinsurance. Assume that we only have incomplete information on a risk X
for an insurer, we use an upper bound for the value at risk (VaR) of the total
loss of an insurer after stop-loss reinsurance arrangement as a risk measure.
The adopted method is a distribution-free approximation which allows to
construct the extremal random variables with respect to the stochastic dom-
inance order and the stop-loss order. We derive the optimal retention such
that the risk measure used in this paper attains the minimum. We estab-
lish the sufficient and necessary conditions for the existence of the nontrivial
optimal stop-loss reinsurance. For illustration purpose, some numerical ex-
amples are included and compared with the results yielded in Theorem 2.1
of Cai and Tan (2007).
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1. Introduction

The importance of managerial decisions related to optimal reinsurance
has received considerable attention in actuarial literature. It usually involves
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formulating an optimization problem and obtaining its optimal solution un-
der certain criterion. Recently, optimization criteria based on tail risk mea-
sures such as value at risk (VaR) and conditional value at risk (CVaR) have
been used in many papers. Combined with different premium principles,
the optimality results of optimal reinsurance are derived by minimizing VaR
and CVaR of the insurer’s total risk exposure. For instance, Cai and Tan
(2007) determines explicitly the optimal retention level of a stop-loss rein-
surance under the expectation premium principle. Tan et al. (2009) extends
the study of Cai and Tan (2007) to other reinsurance premium principles as-
sociated with quota-share and stop-loss reinsurance. Motivated by Cai and
Tan (2007), Cai et al. (2008) derives the optimal ceded loss functions among
the class of increasing and convex ceded loss functions. Compared with Cai
et al. (2008), Chi and Tan (2011) relaxes the constraints on the distribution
of the aggregation loss and provide a simpler proof. Moreover, Chi and Tan
(2011) considers a feasible class with constraints on the ceded and retained
loss function, i.e., both the ceded and retained loss functions are increasing.
See also, Bernard and Tian (2009), Cheung (2010), Tan et al. (2011), and
references therein.

In terms of optimal reinsurance models proposed in these papers, a com-
mon assumption is that the distribution function of the total loss is known
and satisfies some desirable properties. Then the tail risk measures can be
analyzed regularly for a certain confidence level, and the reinsurance pre-
miums can be calculated according to the premium principle. However, in
practice, we may not have enough information to estimate the distribution
of the total loss. For example, in catastrophe insurance, the loss data caused
by the extreme event is scarce due to the low frequency of occurrence.

In the present paper, we assume that some incomplete information of the
total loss is available, say its first two moments and support. More explicitly,
let X be the total loss for an insurer, which belongs to the set B = B(I;µ, σ)
of all nonnegative random variables with mean µ, standard deviation σ and
support contained in the interval I = [0, b], here b = +∞ is allowed. Note
that the partial knowledge is a reasonable assumption. This has been pointed
out by several authors in actuarial and financial research, see e.g. Schepper
and Heijnen (2007), Gerber and Smith (2008), De Schepper and Heijnen
(2010), Wong and Zhang (2013), and references therein.

Following Cai and Tan (2007), the objective of this paper is to determine
the optimal retention in a stop-loss reinsurance under expectation premium
principle. In this paper, only partial information of the total loss rather than
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its distribution function is known. It is difficult to using VaR as a criterion
in our case, instead we using a upper bound of VaR as our optimization
criterion.

Actually, the optimization problem using VaR criterion for a stop-loss
reinsurance involves two components in general: the evaluation of the VaR
of the retained loss for the insurer and the calculation of pure reinsurance
premium determined by certain principle, both require the knowledge of the
distribution function of the risk X. When only incomplete information of X
is available, the question arising here is whether we could find the optimal
retention for a stop-loss reinsurance.

Inspired by distribution-free method, it is possible to derive stochastic
bounds for certain risk in its moment space, which provides useful infor-
mation in probabilistic modelling and has been widely adopted in actuarial
literature. For example, Hürlimann (2001) calculates four plausible premi-
um principles of risk X with known first two moments and bounded support.
Given fixed few moments, Hürlimann (2002) yields the maximum value of
VaR (CVaR) for risk X by construction extremal random variable with re-
spect to (w.r.t.) the stochastic dominance order (stop-loss order). Assuming
that the first two moments and support of X are known, Hürlimann (2005)
uses the stop-loss ordered random variables to develop the analytical lower
and upper bounds of X, and approximates pure premiums for excess of loss
reinsurance with reinstatements. These papers have shown that the obtained
approximations are accurate enough for practical purpose, especially when
one agrees to calculate some risk measures, not based on the actual loss func-
tion, but based on stochastic bounds of the loss. For further reference, we
refer readers to Hürlimann (2008a,b).

Consider a stop-loss reinsurance contract, the first part of this paper
establishes an upper bound of the VaR of the total loss for the insurer. Fur-
thermore, over the set B, the VaR of the retained loss for the insurer is
bounded by determining its maximum random variable w.r.t. the stochastic
dominance order, and the reinsurance premium determined using expectation
principle is bounded by constructing its maximum random variable w.r.t. the
stop-loss order. The second part derives the optimal retention level as well
as the sufficient and necessary conditions for the existence of the nontriv-
ial optimal stop-loss reinsurance strategy by minimizing the obtained upper
bound of the VaR.

The rest of the paper is structured as follows. Section 2 introduces
the VaR based optimal stop-loss reinsurance model. Section 3 provides the

3



distribution-free approximations and establishes an upper bound for the VaR
of the total loss of the insurer. Section 4 derives the optimal retention and
discusses the sufficient and necessary conditions for the existence of a nontriv-
ial optimal stop-loss reinsurance strategy. The final Section 5 illustrates the
results by numerical examples and compares them with the results yielded
in Theorem 2.1 of Cai and Tan (2007).

2. VaR based optimal reinsurance model

In this section, we establish the framework of the VaR risk measure based
optimal stop-loss reinsurance model, which have been described in detail in
Cai and Tan (2007).

Let the total loss for an insurer be X, where X ∈ B. We define XI and
XR, respectively, as the retained loss and the ceded loss random variables
under stop-loss reinsurance arrangement. Then XI and XR are related to X
as follows:

XI =

{
X, X ≤ d
d, X > d

= X ∧ d (1)

and

XR =

{
0, X ≤ d
X − d, X > d

= (X − d)+, (2)

where 0 ≤ d ≤ b is known as the retention, x ∧ y := min{x, y}, and (x)+ :=
max{x, 0}.

With the stop-loss reinsurance contract, the insurer caps the risk exposure
at the retention, and transfers the part that exceeds the retention to the
reinsurer. Note that d = b denotes the special case where the insurer retains
all loss, and d = 0 means that the insurer transfers all loss to the reinsurer.
Consequently, the former case implies no reinsurance, and the latter case
leads to full reinsurance.

In exchange of undertaking the risk, the insurer should pay a reinsurance
premium to the reinsurer. Here, we assume that the reinsurance premium is
determined by expectation principle and expressed as δ(d) = (1 + ρ)πX(d),
where ρ > 0 is the safety loading factor and

πX(d) = E(XR) = E(X − d)+ (3)

is the stop-loss pure premium. In what follows, we denote ρ̄ = (1 + ρ) for
simplicity.
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Suppose that the total risk exposure of the insurer in the presence of
reinsurance is T . The above analysis indicates that T can be expressed as
the sum of two components: the retained loss and the incurred reinsurance
premium; that is,

T = XI + δ(d). (4)

To determine the optimal retention of stop-loss reinsurance by minimizing
the proposed risk measure associated with T , we now introduce the definition
of VaR.

The VaR of a random variable X at a confidence level 1 − α where 0 <
α < 1 is defined as

V aRα(X) = inf{x : Pr(X > x) ≤ α}. (5)

It is equivalent to the 100(1− α)-th percentile of X. Hence,

V aRα(X) ≤ x ⇔ F̄X(x) ≤ α, (6)

where F̄X(x) = 1 − FX(x). In addition, if g is an increasing continuous
function, then

V aRα(g(X)) = g(V aRα(X)). (7)

Other properties of the VaR considered in this paper are its useful links with
stochastic order, which will be presented in next section.

Analogously, we can define VaR for the insurer’s retained loss XI and
the insurer’s total loss T , i.e., V aRα(d,XI) = inf{x : Pr(XI > x) ≤ α} and
V aRα(d, T ) = inf{x : Pr(T > x) ≤ α}. Here, we introduce an argument d
to the VaR notations to emphasize that these risk measures are functions of
the retention d. From (4) and (7), we have

V aRα(d, T ) = V aRα(d,XI) + δ(d). (8)

Building upon these, the optimal retentions by minimizing the corresponding
VaR can be summarized as:

V aRα(d
∗, T ) = min

0≤d≤b
{V aRα(d,XI) + δ(d)}. (9)

In Cai and Tan (2007), the authors establish necessary and sufficien-
t conditions for the existence of the optimal retention for (9), where the
distribution function of the risk X plays a role in the resulting optimal solu-
tion. As previously mentioned, with only partial information of X, neither
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V aRα(d,XI) nor δ(d) can be derived analytically. Therefore, it is difficult to
determine the optimal retention d∗ in formula (9) for this case.

However, notice that in (9), we have that

V aRα(d,XI) = V aRα(X) ∧ d, δ(d) = ρ̄πX(d)

are two functionals of X, where the first equation holds due to (7). These
two functionals preserve, respectively, the stochastic dominance order and the
stop-loss order. Consequently, these orders exploiting results can be used to
bound the functionals of X by determining their extremal values over the set
B, which will be explicitly introduced in next section.

3. Distribution-free approximations

In this section, we first introduce some notations of stochastic orders
which will be used later on.

Let X1 and X2 be two random variables. X1 is said to be smaller than
X2 in stochastic dominance order, denoted by X1≤stX2, if the inequality
F̄1(x) ≤ F̄2(x) holds for all x ∈ R, where F̄i is the survival function of Xi,
for i = 1, 2. X1 is said to be smaller than X2 in stop-loss order, written as
X1≤slX2, if π1(x) ≤ π2(x), for all x ∈ R, where πi(x) = E(Xi − x)+ is the
stop-loss transform of Xi, for i = 1, 2. In actuarial science, stochastic orders
have been widely discussed to compare the riskiness of different random sit-
uations. Standard reference is Denuit et al. (2006). As a sub-stream of this
research, the optimality criterion by minimizing the retained risk w.r.t. cer-
tain stochastic order has general application in optimal reinsurance theory.
See, for instance, Denuit and Vermandele (1998), Denuit and Vermandele
(1999), Cai and Wei (2012).

Theoretically, given a partial order between random variables and some
class of random variables, it is possible to construct extremal random vari-
ables w.r.t. this partial order. We now formally construct these extremal
random variables w.r.t. the stochastic dominance order and the stop-loss
order for X ∈ B, respectively.

Let F∗(x) and F ∗(x) be the Chebyshev-Markov extremal distributions
over the space B, which are solutions of the extremal moment problems

F̄∗(x) := min
X∈B

{F̄X(x)}, F̄ ∗(x) := max
X∈B

{F̄X(x)},

where F̄∗(x) = 1− F∗(x) and F̄ ∗(x) = 1− F ∗(x).
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Random variables with distributions F∗(x) and F ∗(x) are denoted by X∗
and X∗, and are extremal w.r.t. the stochastic dominance order, that is

X∗ ≤st X ≤st X
∗, for all X ∈ B.

Similarly, the minimal and maximal stop-loss transforms over the space
B are defined as

πl(d) := min
X∈B

{πX(d)}, πu(d) := max
X∈B

{πX(d)}.

From (3), a one-to-one correspondence between a distribution function and its
stop-loss transform shows that F̄X(x) = − d

dx
πX(x). Then, we define minimal

and maximal stop-loss ordered random variables Xl and Xu by specifying
their distribution functions

Fl(x) = 1 +
d

dx
πl(x), Fu(x) = 1 +

d

dx
πu(x). (10)

These are extremal in the sense that

Xl ≤sl X ≤sl Xu, for all X ∈ B.

Therefore, the following relationships

min
X∈B

{V aRα(X)} = V aRα(X∗), max
X∈B

{V aRα(X)} = V aRα(X
∗) (11)

and

min
X∈B

{E(X − d)+} = E(Xl − d)+, max
X∈B

{E(X − d)+} = E(Xu − d)+ (12)

hold with these notations.
Recall formula (9), the maximum value of V aRα(d,XI) and δ(d) over the

set B can be derived analytically as follows.

Proposition 1. The maximum of V aRα(d,XI) for X ∈ B is
Case 1: α ≤ σ2

σ2+(b−µ)2
, max

X∈B
{V aRα(d,XI)} = d.

Case 2: σ2

σ2+(b−µ)2
≤ α ≤ µ2

σ2+µ2 , max
X∈B

{V aRα(d,XI)} =
(
µ+

√
1−α
α

σ
)
∧d.

Case 3: α ≥ µ2

σ2+µ2 , max
X∈B

{V aRα(d,XI)} =
(
µ+ (1−α)bµ−σ2

αb−µ

)
∧d.
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Proof. The distribution function of the normalized random variable X∗−µ
σ

has been summarized in Hürlimann (2002) (TABLE III.1). Then, after some
transformations and algebraic operations, the distribution functions of X∗

can be described in tabular form:

condition F ∗(x)

0 ≤ x ≤ µ− σ2

b−µ
0

µ− σ2

b−µ
≤ x < µ+ σ2

µ
σ2+(b−µ)(x−µ)

bx

µ+ σ2

µ
≤ x < b (x−µ)2

σ2+(x−µ)2

x = b 1

Inserting this into the formula

max
X∈B

{V aRα(d,XI)} = max
X∈B

{V aRα(X ∧ d)}

= max
X∈B

{V aRα(X)} ∧ d

= V aRα(X
∗) ∧ d

yields the desired results.

Proposition 2. For X ∈ B, the maximum stop-loss transform of X is given
by

Case 1: 0 ≤ d ≤ σ2+µ2

2µ
, max

X∈B
{πX(d)} = µ

(
1− µd

σ2+µ2

)
.

Case 2: σ2+µ2

2µ
≤ d ≤ b+µ

2
− σ2

2(b−µ)
, max

X∈B
{πX(d)} =

√
σ2+(d−µ)2

2
− d−µ

2
.

Case 3: b+µ
2

− σ2

2(b−µ)
≤ d ≤ b, max

X∈B
{πX(d)} = σ2(b−d)

σ2+(b−µ)2
.

Proof. From Hürlimann (2001) (Table 1), one obtains the survival function of
the normalized random variable Xu−µ

σ
. Similarly to the proof of Proposition

1, to obtain the maximum of πu(d), we first calculate the distribution of Xu,
which is determined by the following table:
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condition Fu(x)

0 < x ≤ σ2+µ2

2µ
µ2

σ2+µ2

σ2+µ2

2µ
≤ x ≤ 1

2

(
b+ µ− σ2

b−µ

)
1
2

(
1− x−µ√

σ2+(x−µ)2

)
1
2

(
b+ µ− σ2

b−µ

)
≤ x < b σ2

σ2+(b−µ)2

x = b 1

By the definition of stop-loss transform, it follows

max
X∈B

{πX(d)} = πu(d) = E(Xu − d)+

=

∫ b

d

(x− d)dFu(x).

The desired results are concluded after some calculations.

Remark 1. Based on Hürlimann (2008a,b), two comments need be stated
here. First, the minimum of V aRα(d,XI) and πX(d) can be derived since the
distribution function of X∗ and Xl are all analytic. Second, one can carry on
a similar analysis for the space of random variables with information of up
to n = 3, 4 moments being known, except that the mathematical operations
are more complex.

Combining these two propositions, an upper bound for V aRα(d, T ), de-
noted by

V aR∗
α(d, T ) := max

X∈B
{V aRα(d,XI)}+max

X∈B
{δ(d)}, (13)

can be obtained after substituting the stochastic ordered bounds for X to
calculate the corresponding risk measures. Note that (13) is also an upper
bound of

max
X∈B

{V aRα(d,XI) + δ(d)}. (14)

Since (14) can be viewed as the worst scenario VaR of the total risk
exposure, a more natural problem may be to minimize it for finding the
optimal level of retention. However, this is difficult mathematically, even
the existence of solution is questionable. We propose to study an alternative
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optimization problem, that is we minimize (13). We can consider the upper
bound of the worst scenario VaR as a risk measure, and our aim is to minimize
this risk measure. These motivate us to seek the optimal level of retention.
Mathematically, it is equivalent to

d∗ = argmin
0≤d≤b

{V aR∗
α(d, T )}

= argmin
0≤d≤b

{max
X∈B

{V aRα(d,XI)}+max
X∈B

{δ(d)}}

= argmin
0≤d≤b

{V aRα(X
∗) ∧ d+ ρ̄πu(d)}, (15)

where the objective function

OBF (d) := V aRα(X
∗) ∧ d+ ρ̄πu(d)

is analytic according to the conclusions of Proposition 1 and Proposition 2.

Remark 2. The optimization problem (15) produces a conservative solu-
tion because the objective function is provided by using the maximum of
V aRα(d,XI) and maximum of πX(d) over the set B. Therefore, an optimiza-
tion using the minimal values as well as the average of these approximations
may be a proper alternative.

4. Optimal retention

In order not to complicate the formulae, we use following short notation
for some intervals:

• I1 =
[
0, σ

2+µ2

2µ

]
,

• I2 =
[
σ2+µ2

2µ
, b+µ

2
− σ2

2(b−µ)

]
,

• I3 =
[
b+µ
2

− σ2

2(b−µ)
, b
]
.

Moreover, as the measure of reinsurance premium, ρ̄ will play a critical role
in the solution of the optimization problem (15). Thus, we also introduce
two notations for convenience:

∆1 =
σ2+µ2

µ2 and ∆2 =
σ2+(b−µ)2

σ2 ,
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where ∆1 ≤ ∆2 holds by moment inequalities.
Our purpose in this section is to determine the optimal retention d∗ in

the interval I1 ∪ I2 ∪ I3 for the optimization problem (15). The key results
are verified in the following theorem.

Theorem 1. Consider the optimization problem (15).
(a) For α ≤ σ2

σ2+(b−µ)2
, the optimal retention d∗ and the minimum value

of risk measure are determined as follows:

condition d∗ OBF (d∗)

1 < ρ̄ < ∆1 0 ρ̄µ

ρ̄ = ∆1 any number in I1 µ+ σ
µ
σ

∆1 < ρ̄ < ∆2 µ+ σ(ρ̄−2)

2
√
ρ̄−1

µ+
√
ρ̄− 1σ

ρ̄ = ∆2 any number in I3 b

ρ̄ > ∆2 b b

(b) For σ2

σ2+(b−µ)2
< α ≤ µ2

σ2+µ2 , the optimal retention d∗ and the corre-

sponding minimum value of risk measure are given by:

condition d∗ OBF (d∗)

1 < ρ̄ < ∆1 0 ρ̄µ

ρ̄ = ∆1 any number in I1 µ+ σ
µ
σ

∆1 < ρ̄ < 1
α

µ+ σ(ρ̄−2)

2
√
ρ̄−1

µ+
√
ρ̄− 1σ

ρ̄ ≥ 1
α

b µ+
√

1−α
α

σ

(c) For α > µ2

σ2+µ2 , the optimal retention d∗ and the minimum value of
risk measure are described as:

condition d∗ OBF (d∗)

1 < ρ̄ < ∆1 u∗ min
{
ρ̄µ, µ+ (1−α)bµ−σ2

αb−µ

}
ρ̄ ≥ ∆1 b µ+ (1−α)bµ−σ2

αb−µ

where u∗ = 0, for ρ̄µ < µ+ (1−α)bµ−σ2

αb−µ
; u∗ = b, otherwise.
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Proof. Case 1: If α ≤ σ2

σ2+(b−µ)2
, then

OBF (d) =


d+ ρ̄µ

(
1− µd

σ2+µ2

)
, d ∈ I1,

d+ ρ̄

(√
σ2+(d−µ)2

2
− d−µ

2

)
, d ∈ I2,

d+ ρ̄ σ2(b−d)

σ2+(b−µ)2
, d ∈ I3.

(16)

Observe that from (16), OBF (d) is a continuous function of d on the
interval I1∪I2∪I3. Taking its first two derivatives, the following five situations
can be identified.

(1) If 1 < ρ̄ < ∆1, then OBF (d) is strictly increasing on I1 ∪ I2 ∪ I3. It
follows that the optimal retention attains at d∗ = 0, and the minimum value
of OBF (d) equals ρ̄µ.

(2) If ρ̄ = ∆1, then OBF (d) is strictly increasing on I2 ∪ I3, and takes a
constant on d ∈ I1. Therefore, the optimal retention d∗ can be any number
on I1 with OBF (d∗) = µ+ σ

µ
σ.

(3) If ∆1 < ρ̄ < ∆2, then OBF (d) is decreasing on I1 and increasing on
I3. On the interval I2, the first order condition of OBF (d) shows that it has
at least one turning point. Furthermore, the second order condition presents
that OBF (d) is convex on I2. These imply that OBF (d) has one and only
one turning point on I2. Therefore, not only the local minimum value of
OBF (d) on the interval I2, but also its global minimum value on the interval

I1 ∪ I2 ∪ I3 reaches at the unique turning point, i.e., d∗ = µ + σ(ρ̄−2)
2
√
ρ̄−1

and

OBF (d∗) = µ+
√
ρ̄− 1σ.

(4) If ρ̄ = ∆2, then OBF (d) is strictly decreasing on I1 ∪ I2, and takes a
constant on I3. It follows immediately that d∗ can be an arbitrary number
in I3 and OBF (d∗) = b.

(5) If ρ̄ > ∆2, then OBF (d) is strictly decreasing on I1∪I2∪I3. It implies
that d∗ = b and OBF (d∗) = b.

Case 2: If σ2

σ2+(b−µ)2
< α ≤ µ2

σ2+µ2 , then

OBF (d) =



(
µ+

√
1−α
α

σ
)
∧ d+ ρ̄µ

(
1− µd

σ2+µ2

)
, d ∈ I1,(

µ+
√

1−α
α

σ
)
∧ d+ ρ̄

(√
σ2+(d−µ)2

2
− d−µ

2

)
, d ∈ I2,(

µ+
√

1−α
α

σ
)
∧ d+ ρ̄ σ2(b−d)

σ2+(b−µ)2
, d ∈ I3,

(17)
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where µ+
√

1−α
α

σ ∈
[
µ+ σ

µ
σ, b

]
⊂ I2 ∪ I3. After an observation, we can

divide the range of d into two parts, i.e.,[
0, µ+

√
1−α
α

σ
]
and

(
µ+

√
1−α
α

σ, b
]
.

For d ∈
(
µ+

√
1−α
α

σ, b
]
, it follows µ+

√
1−α
α

σ ∧ d = µ+
√

1−α
α

σ. In-

serting this into formula (17), we obtain that OBF (d) is strictly decreas-

ing on
[
µ+

√
1−α
α

σ, b
]
, which indicates the optimal retention d∗1 = b and

OBF (d∗1) = µ+
√

1−α
α

σ.

For d ∈
[
0, µ+

√
1−α
α

σ
]
, it follows µ+

√
1−α
α

σ ∧ d = d. Through

some substitutions, (17) reduces to (15) with support I1 ∪ I4, where I4 :=[
σ2+µ2

2µ
, µ+

√
1−α
α

σ
]
⊂ I2 ∪ I3. Based on the analysis in Case 1, the optimal

retention on I1 ∪ I4 can be derived by a similar reasoning. Here, we denote
the optimal results as d∗2 and OBF (d∗2) in this situation.

A comparison between OBF (d∗1) and OBF (d∗2) yields the final version of
d∗ and OBF (d∗) as follows.

(1) If 1 < ρ̄ < ∆1, then d∗ = d∗2 = 0 and OBF (d∗) = OBF (d∗2) = ρ̄µ.
(2) If ρ̄ = ∆1, then d∗ = d∗2, where d∗ can take any number on I1 and

OBF (d∗) = µ+ σ
µ
σ.

(3) If ∆1 < ρ̄ < ∆2, then the optimality depends on the relationship

between µ+ σ(ρ̄−2)
2
√
ρ̄−1

and µ+
√

1−α
α

σ:

(i) if ρ̄−2
2
√
ρ̄−1

≥
√

1−α
α

, from formula (17), then OBF (d) is strictly decreas-

ing on I1 ∪ I2 ∪ I3. Thus, d
∗ = d∗1 = b and OBF (d∗) = µ+

√
1−α
α

σ;

(ii) if ρ̄−2
2
√
ρ̄−1

<
√

1−α
α

, then

OBF (d∗) =

{
µ+

√
1−α
α

σ, if ρ̄ > 1
α
,

µ+
√
ρ̄− 1, otherwise,

with corresponding d∗ as follows

d∗ =

{
b, if ρ̄ > 1

α
,

µ+ σ(ρ̄−2)

2
√
ρ̄−1

, otherwise.
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Note that ρ̄−2
2
√
ρ̄−1

≥
√

1−α
α

implies ρ̄ > 1
α
. Therefore, we can summarize that:

if ∆1 < ρ̄ < 1
α
, then d∗ = µ+ σ(ρ̄−2)

2
√
ρ̄−1

and OBF (d∗) = µ+
√
ρ̄− 1σ;

if 1
α
≤ ρ̄ < ∆2, then d∗ = b and OBF (d∗) = µ+

√
1−α
α

σ.

(4) If ρ̄ ≥ ∆2, then d∗ = d∗1 = b and OBF (d∗) = µ+
√

1−α
α

σ.

Case 3: For α > µ2

σ2+µ2 , the proof is quite similar to those of Case 1 and
Case 2, which is omitted here.

The results from Theorem 1 tell us that, with the known incomplete
information of risk X, the optimal retention depends only on the reinsurer’s
loading factor and the first two moments and support of the total loss.

Letting b → +∞ in Theorem 1, we can also derive the optimal results
when the support of the total loss X is infinite. Here, the details are omitted.

Following Tan et al. (2009), in terms of the solution to optimization prob-
lem (15), the optimal stop-loss reinsurance can be classified as either trivial
or nontrivial. By trivial optimal stop-loss reinsurance, we mean that it is
optimal to have either no reinsurance or full reinsurance, i.e., either d∗ = b
or d∗ = 0. On the other hand, the optimal stop-loss reinsurance is nontrivial
if the optimal retention d∗ lies in the open interval (0, b). Then based on
Theorem 1, the following sufficient and necessary conditions are established
for the existence of nontrivial optimal stop-loss reinsurance.

Corollary 1. (a) For α ≤ σ2

σ2+(b−µ)2
, the optimal stop-loss reinsurance is

nontrivial if and only if ∆1 < ρ̄ < ∆2 holds.
(b) For σ2

σ2+(b−µ)2
< α ≤ µ2

σ2+µ2 , the optimal stop-loss reinsurance is non-

trivial if and only if ∆1 < ρ̄ < 1
α
.

(c) For α > µ2

σ2+µ2 , the optimal stop-loss reinsurance is always trivial.

5. Numerical illustration

In this section, we present three examples to illustrate the results in The-
orem 1. Here, we denote Γ := (µ, σ, b) as the known information of the
total loss X for simplicity. For comparison purpose, we also assume that X
has known distribution function, satisfying certain condition Γ. Then the
optimization problem introduced in formula (9) can be solved according to
Theorem 2.1 of Cai and Tan (2007), where the optimal retention and the

14



Table 1: Optimal solutions comparison for truncated exponential distribution
with fixed α = 0.05

ρ̄ Γ d∗ OBF (d∗) d∗∗ OBF (d∗∗) IM

2.1 (1000, 1000, 100000) 1047.67 2048.81 741.94 2158.36 5.07

(1000, 1000, 50000) 1047.67 2048.81 741.94 2158.36 5.07

(999.54, 997.73, 10000) 1047.11 2045.97 741.89 2157.4 5.16

(995.85, 984.3, 7500) 1042.77 2018.2 741.33 2149.51 5.64

(966.08, 910.64, 5000) 1009.5 1921.17 734.55 2085.63 7.89

2.5 (1000, 1000, 100000) 1204.12 2224.74 916.29 2443.44 8.95

(1000, 1000, 50000) 1204.12 2224.74 916.29 2443.44 8.95

(999.54, 997.73, 10000) 1203.21 2221.5 916.22 2442.3 9.04

(995.85, 984.3, 7500) 1196.77 2201.37 915.46 2432.97 9.52

(966.08, 910.64, 5000) 1151.96 2081.37 906.23 2357.44 11.71

corresponding minimum VaR are denoted by d∗∗ and OBF (d∗∗), respective-

ly. Let IM :=
∣∣∣OBF (d∗)−OBF (d∗∗)

OBF (d∗∗)

∣∣∣ × 100% be the implicit margin between

the OBF (d∗) and OBF (d∗∗), which can be found in the last column of the
following tables.

Example 1. Assuming that α = 0.05, Table 1 provides the optimal retention
d∗ and the corresponding OBF (d∗) by varying Γ for ρ̄ = 2.1 and ρ̄ = 2.5,
respectively. Under the known information Γ, we further suppose X is trun-
cated exponential distributed with survival function

SX(x) =

{
e−0.001x−e−0.001b

1−e−0.001b , 0 ≤ x ≤ b,

0, x > b.

According to Theorem 2.1 of Cai and Tan (2007), d∗∗ and OBF (d∗∗) are
calculated and presented in Table 1.

Table 1 shows that as the reinsurance premium (ρ̄) increases, the optimal
retentions d∗ and d∗∗ increase. As a result, the insurer’s total risk exposure
becomes more dangerous since both OBF (d∗) and OBF (d∗∗) increase. On
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Table 2: Optimal solutions comparison for truncated Pareto distribution with
fixed α = 0.05

ρ̄ Γ d∗ OBF (d∗) d∗∗ OBF (d∗∗) IM

2.3 (1000, 1118.03, 100000) 1147.08 2274.75 781.72 2318.44 1.88

(1000, 1118.02, 50000) 1147.08 2274.75 781.72 2318.44 1.88

(993.68, 1085.01, 10000) 1136.42 2230.78 781 2303.76 3.17

(980.53, 1039.45, 7500) 1117.28 2165.68 778.76 2273.1 4.73

(932.21, 920.41, 5000) 1053.3 1981.65 766.52 2159.74 8.25

2.5 (1000, 1118.03, 100000) 1228.22 2369.31 863.62 2462.93 3.8

(1000, 1118.02, 50000) 1228.21 2369.43 863.62 2462.92 3.8

(993.68, 1085.01, 10000) 1215.12 2322.54 862.78 2447 5.09

(980.53, 1039.45, 7500) 1192.7 2253.59 860.18 2413.73 6.63

(932.21, 920.41, 5000) 1120.09 2059.49 845.96 2290.88 10.1

the other hand, for fixed parameters, d∗ is always larger than d∗∗, while the
relationship between OBF (d∗) and OBF (d∗∗) is just opposite. These confirm
with the fact that our optimization criterion products a conservative result.
Table 1 shows that a large value ρ̄ contains a relatively large implicit margin.

Example 2. For fixed α = 0.05, we obtain d∗ and OBF (d∗) for different
value of Γ in Table 2, where ρ̄ = 2.3 and ρ̄ = 2.5 guarantee the optimal
stop-loss reinsurance is non-trivial. Furthermore, let X be truncated Pareto
distributed with available information Γ, whose survival function satisfies

SX(x) =

{
S0(x)−S0(b)

1−S0(b)
, 0 ≤ x ≤ b,

0, x > b,

where S0(x) =
(

9000
x+9000

)10
. Taking a similar calculation procedure with Ex-

ample 1, we obtain the optimal solutions d∗∗ and OBF (d∗∗) in Table 2.

Example 3. Given ρ̄ = 2.4 and ρ̄ = 2.5, d∗ and OBF (d∗) are concluded
in Table 3 by varying Γ for α = 0.05. As a further comparison, for given
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Table 3: Optimal solutions comparison for truncated Burr distribution with
fixed α = 0.05

ρ̄ Γ d∗ OBF (d∗) d∗∗ OBF (d∗∗) IM

2.4 (909.16, 1064.79, 100000) 1089.14 2169.04 726.62 2196.84 1.26

(909.16, 1064.78, 50000) 1089.14 2169.03 726.63 2196.84 1.27

(903.68, 1034.45, 10000) 1078.54 2127.66 726 2183.57 2.56

(892.41, 992.93, 7500) 1060.24 2067.26 724.11 2156.15 4.12

(851.08, 884.37, 5000) 1000.57 1897.48 713.79 2055.06 7.67

2.5 (909.16, 1064.79, 100000) 1126.51 2213.26 763.84 2264.17 2.25

(909.16, 1064.78, 50000) 1126.51 2213.25 763.84 2264.17 2.25

(903.68, 1034.45, 10000) 1114.8 2170.62 763.17 2250.35 3.54

(892.41, 992.93, 7500) 1095.09 2108.49 761.13 2221.82 5.1

(851.08, 884.37, 5000) 1031.6 1934.21 750.02 2116.64 8.61

information Γ, it is supposed that X has a truncated Burr distribution with
survival function

SX(x) =

{
S1(x)−S1(b)

1−S1(b)
, 0 ≤ x ≤ b,

0, x > b,

where S1(x) =
(

100000.95

x0.95+100000.95

)11

. After some computation, we have optimal

solutions d∗∗ and OBF (d∗∗) in Table 3.

Observations from Table 2 and Table 3 lead to similar results as that from
Table 1.

For fixed ρ̄ = 2.5, compared with results from these three tables for certain
row, we find that the values of IM in Table 3 are always the smallest, and
the largest values are in Table 1. These are mainly because the truncated
Burr distribution used in Table 3 has the heaviest right tail, and the right tail
of the truncated exponential distribution presented in Table 1 is the lightest.
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