Application of Recommendation System in Banking Industry

Jason Huo Jan 2019

Agenda

- **How IMDb recommend movies ?**
- **Content-Based Filtering**
- **Collaborative Filtering**
- **Collaborative vs Content-based: Pros and Cons**
- **Use Case: Credit Card Offer Recommendation**

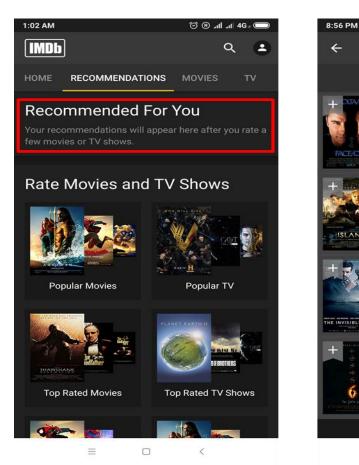
How IMDb recommend movies ?

4

SLAND

 \equiv

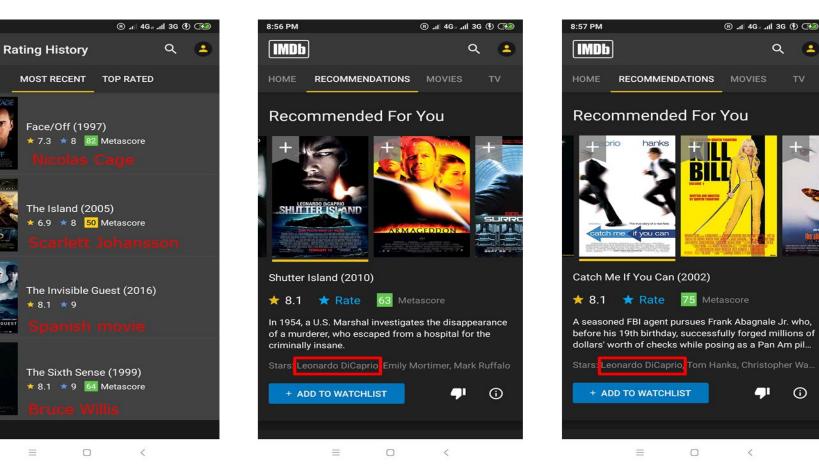
"Your recommendations will appear here after you rate a few movie or TV shows"



I rate 4 movies of Thriller/Adventure/Si-Fi/Mystery, stars by Nicolas Cage/Scarlett Johansson/Bruce Willis

- A list of 50 movies are recommended **REAL TIME**! ٠ Most are of similar genre as the movies I rate, and I watched more than half of the list.
- IMDb knows **Leonardo DiCaprio** is my favorite star ! ٠

(i)

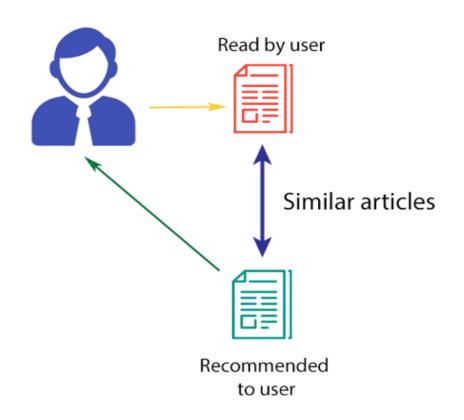


Content-Based Filtering

Customers who buy a specific item in the past, will buy similar items in the future !

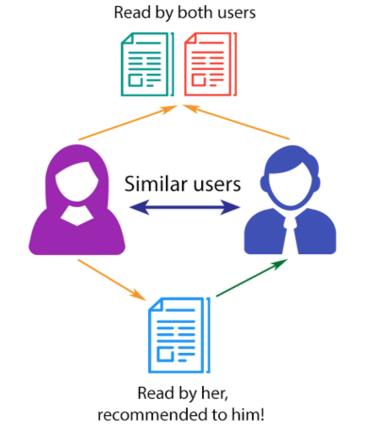
items you may like ...

How content-base filtering works?



Collaborative Filtering

How collaborative filtering works?



Collaborative vs Content-based: Pros and Cons

Challenge	Collaborative Filtering	Content-based Filtering		
First rater problem	Yes	No		
Cold-start problem	Yes	No		
Sparsity problem	Yes (may not be serious in banking)	No		
Popularity bias problem	Yes	No		
Complex feature selection	No	Yes		

Some Handy Python Package for Recommendation System

Movielens 100k	RMSE	MAE	Time
SVD	0.934	0.737	0:00:11
SVD++	0.92	0.722	0:09:03
NMF	0.963	0.758	0:00:15
Slope One	0.946	0.743	0:00:08
k-NN	0.98	0.774	0:00:10
Centered k-NN	0.951	0.749	0:00:10
k-NN Baseline	0.931	0.733	0:00:12
Co-Clustering	0.963	0.753	0:00:03
Baseline	0.944	0.748	0:00:01
Random	1.514	1.215	0:00:01
Movielens 1M	RMSE	MAE	Time
SVD	0.873	0.686	0:02:13
SVD++	0.862	0.673	2:54:19
NMF	0.916	0.724	0:02:31
Slope One	0 907	0 715	0.02.31

surpr

i surpriselib.com/

A Python scikit for recommender systems.

Home

 \rightarrow

 \bigcirc

Documentation

GitHub page
★ Star [♀]Fork Follow @Surpriselib

Maintained by Nicolas Hug Page built with Jekyll and Hyde

Use Case: Credit Card Offer Recommendation

Hybrid Recommendation System

G1: Non-existing customers

Recommend	the	Most	Popular	Items
	(Col	d-star	t)	

Know nothing about these customers, the most popular merchant offers will be recommended

G2: New customers without transaction

People like you also like... (customer-to-customer similarity)

- Identify the ones who are similar to you based on demographics, e.g., income level, occupation, marital status, nationality, deposit balance, etc.
- Recommend based on these similar customers' preference

<u>G3: Existing customer w/ <X transactions</u>

Those who like what you like also like... (customer-to-item similarity)

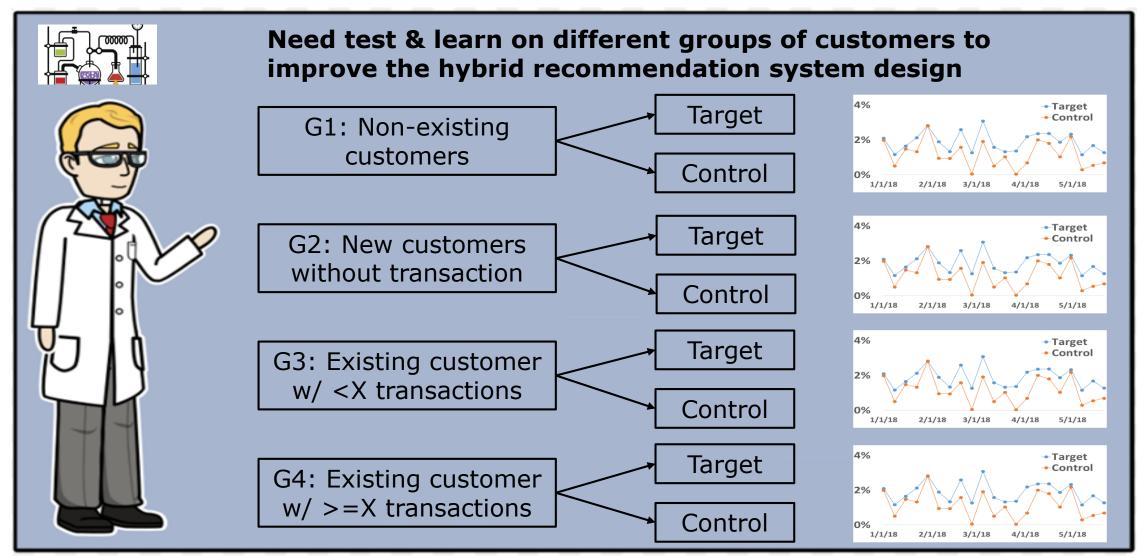
- Not enough information to conclude customers' preference
- Identify customers who have similar preference as you, to recommend what they commonly prefer

You may also like... (item-to-item similarity + recency weighting)

<u>G4: Existing customer w/ >=X transactions</u>

- Identify customer preference based on transaction history, e.g., cuisine type / price range / dinning location / merchant type / airline tier / hotel tier / travel seasonality, etc.
- More recent transactions would be assigned with higher weighting

Experimental Design for Measure of Success in terms of Clickthrough Rate, Incremental Sales & Revenue



Q&A