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• Data cloud is first processed by

an analytics machine.

• Analytics refers to both analysis

of the data and the development

of data-driven trading strategies

which naturally make use of Op-

timization.

•Models provide the connection

between the data and the trading

strategies.

• Algorithms are step-by-step

procedures for computing the so-

lutions of not only optimization

but also other mathematical and

data analysis problems.
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Quantitative Strategies and Time-Scales 3

• Fundamentally motivated quant (FMQ): Buying a stock if it is undervalued with

respect to fundamentals (such as earning quality, value of the firm, and investor

sentiment). Since the fundamentals are based on quarterly earning reports and

forecasts, the FMQ has a quarterly time-scale.

• Macro strategies:

– Use macroeconomic analysis of market events and trends to identify opportu-

nities for investment. They include discretionary and systematic strategies.

Discretionary ones carried out by investment managers who identify and

select the investments. Systematic macro strategies are model-based and

executed by software with limited human involvement.

– Example: Buy US dollars if the macroeconomic analysis suggests a rising

trend for the dollar. Since the Federal Reserve Bank has to hold collaterals

mainly in US Treasury debts and since the shortest maturity of Treasury bills

is 28 days (about a month), such macro strategy has a monthly time scale.
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Quantitative Strategies and Time-Scales 4

• Convergence or relative value trades and other statistical arbitrage (StatArb)

strategies:

– Convergence trades: Trading in assets that are expected to converge in value.

– Relative value strategies take simultaneously a short position in an overvalued

asset and a long position in an undervalued asset, with the expectation that

their spread will decrease over time from the current spread.

– Assets include stocks, bonds and derivatives, and the time-scales range from

minutes to months.

• High-frequency trading (HFT): The time scale of HFT is in milliseconds and the

holding period of the traded securities is usually less than one second.
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Markowitz’s Single-Period Portfolio Theory (Malkiel’s MPT) 5

• m assets’ return with mean vector µ = (µ1, . . . , µm)> and covariance matrix Σ.

• Portfolio weight vector: w = (w1, . . . , wm)> with w>1 = 1.

• Markowitz’s efficient portfolio for target mean return µ∗ (short-selling is allowed):

weff = arg min
w

w>Σw subject to w>µ = µ∗, w>1 = 1.

• weff =
{
BΣ−11− AΣ−1µ + µ∗

(
CΣ−1µ− AΣ−11

)} /
D whereA = µ>Σ−11,

B = µ>Σ−1µ, C = 1>Σ−11, and D = BC − A2.

• Efficient frontier is the collection of all possible (µ∗,
√

w>effΣweff)

• µ and Σ are actually unknown – Plug-in frontier: Replacing them by the sample

mean vector µ̂ and covariance matrix Σ̂ of a training sample of historical returns

rt = (r1t, . . . , rmt)
>, 1 ≤ t ≤ n.

• However, this plug-in frontier is no longer optimal because µ̂ and Σ̂ actually

differ from µ and Σ, and portfolios associated with the plug-in frontier can

perform worse than an equally weighted portfolio that is highly inefficient.
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Three Approaches to Markowitz’s Enigma 6

• Dimension reduction in estimating Σ via multifactor models, i.e., relating the ith

asset returns ri to k factors f1, . . . , fk by ri = αi + (f1, . . . , fk)
>βi + εi, where

αi and βi are unknown regression parameters and εi is an unobserved random

disturbance that has mean 0 and is uncorrelated. Examples: CAPM, APT and

Fama-French three-factor model.

• Use shrinkage estimates of Σ in the form of Σ̂ = δ̂F̂ + (1 − δ̂)S where δ̂ is an

estimator of the optimal shrinkage constant and S = n−1
∑n

i=1(ri−r̄ )(ri−r̄)>.

F̂ is given by the mean of the prior distribution or a structured covariance matrix

F with much fewer parameters than m(m + 1)/2; see Ledoit and Wolf (2003,

2004). The estimate of µ can also be handled by shrinkage similarly.

• To correct for the bias of ŵeff, use the average of the bootstrap weight vectors

w̄ = B−1
∑B

b=1 ŵ∗b , where ŵ∗b is the estimated optimal portfolio weight vector

based on the bth bootstrap sample {r∗b1, . . . , r∗bn} drawn with replacement from

the observed sample {r1, . . . , rn}; see Michaud (1989).
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New Approach of Lai, Xing, and Chen (2011) 7

max
{
E(w>rn+1)− λVar(w>rn+1)

}
(1)

Lai, Xing, and Chen (2011) solve (1) by rewriting it as the following maximization

problem over η:

max
η

{
E
[
w>(η)rn+1

]
− λVar

[
w>(η)rn+1

]}
, (2)

where w(η) is the solution of the stochastic optimization problem

w(η) = arg min
w

{
λE
[
(w>rn+1)2

]
− ηE(w>rn+1)

}
. (3)
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Stylized Facts on Low-Frequency Returns Data 8

Let Pt be the price of a stock (or a more general asset) at time t. Assuming no

dividend over the period from time t − 1 to time t, the logarithmic return is rt =

log(Pt/Pt−1). The stylized facts of low-frequency (daily and weekly) rt are:

• Non-normality in rt (with kurtosis much greater than 3).

• Small autocorrelations of rt.

• Volatility clustering: Strong (many lags) autocorrelations of the r2
t .

• Leverage effect: The volatility response to a large positive return is considerably

smaller than that of a negative return of the same magnitude.

• Marked changes of volatility in response to exogenous (e.g., macroeconomic)

variables and external events (such as scheduled earnings announcements).
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Martingales that Match Stylized Facts 9

• Working model of Lai, Xing, and Chen (2011):

rit = β>i xi,t−1 + εit, (4)

where the components of xi,t−1 include 1, factor variables such as the return of a

market portfolio like S&P 500 at time t−1, and lagged variables ri,t−1, ri,t−2, . . . .

Also, εit = si,t−1(γi)zit, where zit are i.i.d. with mean 0 and variance 1, γi
is a parameter vector which can be estimated by maximum likelihood or gen-

eralized method of moments, and si,t−1 is a given function that depends on

ri,t−1, ri,t−2, . . . .

• A well-known example is the GARCH(1, 1) model

εit = si,t−1zit, s2
i,t−1 = ωi + ais

2
i,t−2 + bir

2
i,t−1, (5)

for which γi = (ωi, ai, bi).
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Neo-MPT involving Martingale Regression Models 10

• Note that (4)–(5) models the asset returns separately, instead of jointly in a

multivariate regression or multivariate GARCH model which has too many pa-

rameters to estimate. While the vectors zt are assumed to be i.i.d., (5) does

not assume their components to be uncorrelated since it treats the components

separately rather than jointly.

• The conditional cross-sectional covariance between the returns of assets i and j

given Rn = {r1, . . . , rn} is given by

Cov(ri,n+1, rj,n+1|Rn) = si,n(γi)sj,n(γj)Cov(zi,n+1, zj,n+1|Rn),

for the model (4)–(5). Thus, the estimator of E(rn+1|Rn) and E(rn+1r
>
n+1|Rn)

are µn = (β̂>1 x1,n, . . . , β̂
>
mxm,n)> and Vn = µnµ

>
n + (ŝi,nŝj,nσ̂ij)1≤i,j≤n ,, re-

spectively, in which β̂i is the least squares estimate of βi, and ŝl,n and σ̂ij are

the usual estimates of sl,n and Cov(zi,1, zj,1) based on Rn.

• Let r0 be the return of the benchmark investment. Take λ as a tuning parameter

and choose it to maximize (over a grid of possible λ) the bootstrap estimate of

the information ratio Eµ,Σ(wλr− r0)

/√
Varµ,Σ(w>λ r− r0).
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Empirical Study of Neo-MPT 11
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Active Portfolio Management 12

• The cornerstones of quantitative portfolio management are prediction of asset

returns from a large pool of investment possibilities, risk estimation, and portfolio

optimization.

• There are two main styles of portfolio management – passive and active.

• Passive portfolio management constructs and administers portfolios that tracks

some given index. Rationale: Index tracking incurs low cost as it does not require

much information gathering on individual stocks. By reducing investment costs,

the net return improves. Moreover, relatively infrequent trading results in fewer

capital gains and therefore lower taxes.

• Goal of active portfolio management: Construct portfolios that aim to outper-

form some index or benchmark. The additional return that a portfolio generates

relative to the benchmark is commonly known as the alpha of the portfolio.

Performance is measured by the information ratio that expresses mean excess

return in units of its standard deviation.
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Active Alpha and Exotic Beta 13

• Two main sources of alpha are (a) superior information, and (b) efficient infor-

mation processing.

• Active portfolio management outperforms the passive approach in the absence

of transaction costs, but the advantage may be outweighed by the transaction

costs.

• Let r ∈ Rm be the return vector of m assets. The returns of the portfolio

and benchmark are rP = w>Pr and rB = w>Br where wP and wB are the

corresponding portfolio weights. Consider the one-factor model rP − rf = α +

β(rB − rf) + ε where rf is the risk-free rate, subtracting rB − rf from both

sides of the equation defines the “active return” of the portfolio by rP − rB =

α + βP (rB − rf) + ε, in which the “active” α denotes the additional return of

the portfolio over that of the benchmark, βP = β−1 is known as the active beta

of the portfolio.

• Since the benchmark portfolio has beta equal to 1 (and therefore zero active

beta), a portfolio with positive alpha and small |β| < 1 can have a high infor-

mation ratio. Such a portfolio is said to have an “exotic beta”.
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Multiperiod Portfolio Theory 14

• Samuelson-Merton (1969) theory of “lifetime portfolio selection”: Dynamic pro-

gramming for expected utilities of consumption and investment.

• Merton’s continuous-time framework

dSt = St(α dt + σ dBt),

dXt = (rXt − Ct) dt− dLt + dMt,

dYt = αYt dt + σYt dBt + dLt − dMt.

with stock price St, Xt = dollar value of investment in bond, Yt = ytSt and

yt = number of shares held in stock. Maximize the expected utility J(t, x, y) =

E
[∫ >

t e−β(s−t)U1(Cs) ds + e−β(T−t)U2(ZT )
∣∣∣Xt = x, Yt = y

]
, with the disount

factor β > 0.

• U1 and U2 are CRRA :−xU ′′(x)/U ′(x) is constant.

• Optimal strategy is to devote a constant proportion (the Merton proportion) p

of the investment to the stock and to consume at a rate proportional to wealth.

• Extensions to the case with proportional transaction costs.
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Dynamic Mean-Variance Portfolio Optimization 15

• Gârleanu and Pedersen (2013): Quadratic transaction costs and reduction to

LQG control problem

• Markowitz and van Dijk (2003): Linear transaction costs and heuristics to ap-

proximate the dynamic programming solution.

• Approximate dynamic programming (ADP)

– Reinforcement learning

– Monte Carlo tree search and deep learning

• Lai and Gao (2016): New approach that combines ADP, singular stochastic

control and adaptive filtering in nonlinear state-space models.
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Stylized Facts on High-Frequency Transaction Data 16

• Transaction prices are in discrete units or ticks.

• Price clustering: The tendency for transaction prices to cluster around certain

values (such as integers).

• Intraday seasonality of trading: Transactions tend to be heaviest near the begin-

ning and close of trading hours and lightest around the middle of a trading day.

It is equivalent to U-shaped (or diurnal) daily pattern in the durations between

transactions.

• Negative lag 1 autocorrelation in (log) price changes from one transaction to the

next.
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High-Frequency Econometrics in Electronic Platforms 17

• Roll’s model of bid-ask bounce to explain negative lag 1 autocorrelations.

• General market microstructure model with additive noise Yti = Xti + εi, where

E(εi) = 0, Xt is the logarithm of the efficient price at time t, and t1 < · · · < tn
is the set of transaction times belonging to [0, T ], and Yti is the logarithm of the

transaction price at time ti.

– Roll’s model is a special case: Xt as the mid price, Yt as the transaction price

and εi = ±1/2 with equal probability.

• Methods to estimate integrated variance [X ]T = p-lim
mesh(Π)→0

∑n
i=1(Xt(i)−Xt(i−1))

2,

in which Π denotes a partition 0 = t0 < · · · < tn = T of [0, T ] and mesh(Π) =

max1≤i≤n(ti − ti−1). Extension to multiple assets.

• Autoregressive conditional duration (ACD) models of inter-transaction times.

Self-exciting point process models.

• Joint modeling of point process and its marks.

• Realized GARCH and other models relating low-frequency to high-frequency

volatilities.
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Limit Order Book: Data and Models 18

• Limit order book (LOB) consists

of all untransacted limit bid and

ask orders for a specific asset.

• Example: Marketable limit order

to buy 150 shares, GTC (stands

for good till cancelled) with limit

price of $114.50, resulting in 100

shares of the limit order traded at

$114.50, and with the remaining

50 shares of the original order now

becoming the best bid in the LOB.

• Such matching rule is known as

the price-time priority rule.

114.52 145

114.51 51

114.50 100

80 114.49

150 114.48

Buy 150 shares at $114.50

⇓

114.53 350

114.52 145

114.51 51

50 114.50

80 114.49
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Snapshot of LOB for British Petroleum on June 25, 2010 19
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Bivariate Point Process with Exponential Auto/Cross Excitation 20

• Let w1i and w2j be the trade sizes for the bid and ask market orders at times ti
and tj, respectively. The intensity process can be modeled by

λ
(1)
t = µ(1)v̄2t +

1

w̄1

∑
ti<t

α11w1ie
−β11(t−ti) +

1

w̄2

∑
tj<t

α12w2je
−β12(t−tj),

λ
(2)
t = µ(2)v̄1t +

1

w̄2

∑
tj<t

α22w2je
−β22(t−tj) +

1

w̄1

∑
ti<t

α21w1ie
−β21(t−ti),

where w̄1 (or w̄2) is the average of the trade sizes w1i (or w2i) in the period [0, t)

and v̄1t is the probability weighted volume for bid orders and v̄2t is that for ask

orders.

• Use maximum likelihood to estimate the parameters.
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Exchange and Informatics 21

• A typical exchange platform consists of the order gateway, the matching engine

and the market data dissemination system.

• The matching engine takes orders routed by the order gateway and performs the

matching of buy and sell orders based on some predetermined algorithms (such

as price-time priority).

• The exchange market data dissemination system broadcasts public order book

events, such as the cancellation and execution of an existing order or the addition

of new (unhidden) limit orders. These market data, which show the real-time

LOB dynamics, are important input of modern quantitative trading.

• To facilitate high-frequency trading activities (such as market making), exchanges

provide colocation services to participants who want to place their trading servers

at the exchange data center to reduce latency. The colocation fee depends on

the space and power consumption that client servers require.
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CME CGW iLink Overview 22

CME CGW iLink overview showing four order gateways and three matching engines. Note

that for CME, matching engine is also known as trading engine. Four gateways nodes: CGW1,

CGW2,CGW3, CGW4; three matching engines Trading Engine 1, Trading Engine 2, Trading En-

gine 3; CGW1 handles four sessions: AB1:9000, AB2:90001, . . . , AB4:9003, where 9000 to 9003

are the ports to which the sessions are connected. Used with permission of CME.

22



Order types 23

• Limit order and market order are the two most common order types for buying

or selling financial securities.

• A limit order is an order to buy or sell a specific amount of shares of a stock at

a specific price.

• A market order is an order to buy or sell a stock at the prevailing market price.

• The advantage of a market order is that it is almost always guaranteed to be

executed. However, it could execute at a significantly worse price than the best

bid and ask prices if there is insufficient liquidity to fill the original order at

those prices. Thus, most exchanges offer various features (such as marketable

limit order) to protect market orders from executing beyond some predetermined

price band.

• A marketable limit order is a buy order with a price limit at or above the lowest

offer in the market or a sell order with a price limit at or below the highest bid

in the market.

23



Order qualifiers 24

• Midpoint-peg (abbreviated as MP) orders are hidden orders pegged to the mid-

point of the National Best Bid and Offer (NBBO). Only the execution of these

orders will reveal their presence. For odd spreads, the pegged orders can execute

in half-penny increments, effectively reducing the cost to less than the minimum

tick size. The key benefits of MP order are price improvement and anonymity.

• The qualifier of iceberg order specifies the display quantify of the order. Upon

execution of the displayed quantity, the order is replenished automatically, until

the full amount is filled. Note that the replenishment order is treated as a new

order in queue priority.

• A post-only order only executes if the price crosses the market by an amount

that is economically advantageous for the order to execute, otherwise the order

is repriced to one tick away from the best bid and ask prices. Market makers,

who use the rebate to control trading costs, can use this qualifier to reduce the

risk of taking liquidity and paying a fee when the snapshot of the market maker’s

order book is delayed. Post-only orders must be marked as display and limit, or

else are rejected by the exchange.

24



Operational Risk 25

• Software error risk

– e.g. undefined behavior, memory leak.

– potential remedy: Unit tests, regression and non-regression testing.

• Order transmission protocol risk

– e.g. incorrect contract multiplier, incorrect FIX de/encoding

– potential remedy: exchange certification (testing) environment.

• Network transmission error risk

– e.g. dropped packets, dropped connection

– potential remedy: heart-beat checks, recovery procedure.

25



Strategy Risk 26

• Model error

– e.g. ill conditioned matrix, model logic error

– potential remedy: condition number check, unit test, simulation.

• Trading exposure

– e.g. portfolio exposure (delta, vega, scenario limits), order rate

– potential remedy: position limits, P&L limits, order rate limits (cap the

number of orders that the strategy can submit within a second).

26



Circuit Breakers and Regulation 27

• Order Protection Rule (Rule 611)

– Target fragmented nature of equities trading

– Ensure transaction price is the best price available: National-Best-Bid-and-

Offer (NBBO)

– 1975 Securities Amendments by SEC

• Circuit Breakers

– Reduce volatility and panic sell-off, e.g. Black Monday 1987

– Multiple levels of price drops (e.g. NYSE: 7% (Level 1), 13% (Level 2), 20%

(Level 3)). Trading halts for specific period of time (e.g. 15 min. for NYSE)

upon price breach.

– Rolling benchmark (the transaction price in the preceding five minutes) is

implemented after Flash Crash (June 11, 2010). (The old benchmark is

determined at a quarterly basis after 1987 Black Monday.)

– Limit-Up-Limit-Down mechanism was implemented in May 2012. Market

Wide Circuit Breakers was also implemented with the prior days closing

S&P 500 index as benchmark.

27



Optimal Execution 28

• Optimal execution is to find a trading strategy that buys and sells some large

amount of shares within a short period of time under some assumptions on how

the stock price is impact by these trading activities.

• Classical result: Bertsimas and Lo (1998) assume the price impact is linear under

the random walk model (for share price) and prove that the optimal trading

strategy is a volume-average type deterministic procedure.

• By assuming a Geometric Brownian Motion model with a multiplicative price

impact, Guo and Zervos (2015) applies singular control theory to show that the

optimal execution strategy is stochastic and Markovian, i.e., it depends on the

state variable associated with the efficient price process.

• Obizhaeva and Wang (2013) and Alfonsi, Fruth, and Schied (2010) solve the

optimal execution problem a LOB-based market impact model. In particular,

Obizhaeva and Wang assume a block-shaped LOB which leads to a closed-form

optimal execution strategy.

28



Optimal Placement 29

• Traders need to decide on (a) whether to use market orders, limit orders, or both,

(b) the number of orders to place at different price levels, and (c) the optimal

sequence of orders in a given time frame to execute each child order (as instructed

by the optimal execution strategy).

• In terms of cost when using limit orders, traders do not need to pay the spread

and can even get a rebate.

• When using market orders, one has to pay both the spread between the limit and

the market orders and the fee in exchange for a guaranteed immediate execution.

• Goal: To balance between paying the spread and fees when placing market orders

against execution/inventory risks when placing limit orders.

• Assuming a continuous-time Markov chain model for the LOB, Hult and Kiessling

(2010) solves the optimal placement problem by using the potential theory.

• Guo et al. (2013) assume a Markov random walk model with mean reversion for

the share price and obtain some more general optimal placement strategies.
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Conclusion 30

• After the tumultuous period marked by the 2007-2008 Financial Crisis and the

Great Recession of 2009, the financial industry has entered a new era.The onset

of this era is marked by two “revolutions” that have transformed modern life and

business.

• One is technological, dubbed “the FinTech revolution” for financial services by

the May 9, 2015, issue of The Economist which says: “In the years since the

crash of 2007-08, policymakers have concentrated on making finance safer. . . .

Away from the regulator spotlight, another revolution is under way. . . . From

payments to wealth management, from peer-to-peer lending to crowdfunding, a

new generation of startups is taking aim at the heart of the industry – and a pot

of revenues that Goldman Sachs estimates is worth $4.7 trillion. . . . fintech firms

are growing fast.” The other is called “big data revolution”.

• Quantitative trading in electronic markets epitomizes Dynamic Optimization,

Financial Technology, and Risk Control in the aforementioned new era of the fi-

nancial industry, covering all aspects ranging from portfolio/wealth management

to order placement and routing.

30
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